Publications

All Publications – Google Scholar

  1. Ion Detection in a DNA Nanopore FET Device, W. Livernois, S. Cao, S. Saha, Q. Ding, A. Gopinath, and M. P. Anantram, Nanotechnology, Volume 35, Number 32, 5202 (2024); https://doi.org/10.1088/1361-6528/ad460b/
  2. Electronic Properties of DNA Origami Nanostructure Revealed by In Silico Calculations, B. Demir, C. A. Gultakti, Z. Koker, M. P. Anantram, and E. E. Oren, The Journal of Physical Chemistry B, Volume 128, Issue 19, Pages 4646-4654 (2024); https://doi.org/10.1021/acs.jpcb.4c00445/
  3. Identifying SARS-CoV-2 Variants using Single-Molecule Conductance Measurements, Z. Aminiranjbar, C. A. Gultakti, M. N. Alangari, Y. Wang, B. Demir, Z. Koker, A. K. Das, M. P. Anantram, E. E. Oren, and J. Hihath, ACS Sensors, Volume 9, Number 6, Pages 2888-2896 (2024); https://doi.org/10.1021/acssensors.3c02734/
  4. Advancing Semiconductor Manufacturing through DNA-Templated Lithography and Molecular-Scale Patterning of 2D Materials, A. Kumari, M.Curtis, A. De, H. Liu, D. Estrada, and M. P. Anantram, IEEE, 2024 IEEE Workshop on Microelectronics and Electron Devices (WMED), 2024, Boise, ID, USA, Other: 2024001284 (eCF); https://doi.org/10.1109/WMED61554.2024.10534135/
  5. A Spin-Dependent Model for Multi-Heme Bacterial Nanowires, W. Livernois and M. P. Anantram, ACS Nano, Volume 17, Issue 10, Pages 9059–9068 (2023);  https://doi.org/10.1021/acsnano.2c12027 /
  6. Charge transport through DNA with energy-dependent decoherence, H. Mohammad and M. P. Anantram, Phys. Rev. E, Volume 108, Issue 4, 4403 (2023); https://doi.org:10.1103/PhysRevE.108.044403/
  7. Performance analysis of DNA crossbar arrays for high-density memory storage applications, A. De, H. Mohammad, Y. Wang, R. Kubendran, A. K. Das, M. P. Anantram,. Scientific Reports, Volume 13, Issue 1, pp. 6650 (2023); https://doi.org/10.1038/s41598-023-33004-6/
  8. Computational study of the role of counterions and solvent dielectric in determining the conductance of B-DNA, Y. Wang, B. Demir, H. Mohammad, E. E. Oren, and M. P. Anantram, Physical Review E, Volume 107, Issue 4, 4404 (2023); https://doi.org/10.1103/PhysRevE.107.044404/
  9. DNA nanopores as artificial membrane channels for bioprotonics, L. Luo, S. Manda, Y. Park, B. Demir, J. Sanchez, M. P. Anantram, Nature Communications, Volume 14, Pages 5364 (2023); https://doi.org/10.1038/s41467-023-40870-1/
  10. Metal-Mediated DNA Nanotechnology in 3D: Structural Library by Templated Diffraction, S. Vecchioni, B. Lu, W.Livernois, Y. P. Ohayon, J. B. Yoder, C-F. Yang, K. Woloszyn, W. Bernfield, M. P. Anantram, J. W. Canary, W. A. Hendrickson, L. J. Rothschild, C. Mao, S. J. Wind, N. C. Seeman, and R. Sha, Advanced Materials, Volume 35, Issue 29, pp. 2210938 (2023); https://doi.org/10.1002/adma.202210938/
  11. Modeling and Simulation of DNA Origami based Electronic Read-only Memory, A. De, H. Mohammad, Y. Wang, R. Kubendran, A. K. Das, M. P. Anantram, 2022 IEEE 22nd International Conference on Nanotechnology (NANO), Palma de Mallorca, Spain, 2022, pp. 385-388, https://doi.org/ 10.1109/NANO54668.2022.9928676/
  12. Classification of DNA Sequences: Performance Evaluation of Multiple Machine Learning Methods, Y. Wang, V. Khandelwal, A. K. Das and M. P. Anantram, 2022 IEEE 22nd International Conference on Nanotechnology (NANO), Palma de Mallorca, Spain, 2022, pp. 333-336, doi: 10.1109/NANO54668.2022.9928773/
  13. Quantum Transport in DNA Heterostructures: Implications for Nanoelectronics, S. R. Patil, H. Mohammad, V. Chawda, N. Sinha, R. K. Singh, J. Qi, and M. P. Anantram, ACS Applied Nano Materials, Volume 4, Issue 10, Pages 10029-10037 (2021); https://doi.org10.1021/acsanm.1c01087/
  14. A machine learning approach for accurate
    and real-time DNA sequence identification, Y. Wang, M. Alangari, J. Hihath, A. K. Das, and M. P. Anantram, BMC Genomics, Volume 22, Issue 1, Pages 1-10 (2021); https://doi.org/10.1186/s12864-021-07841-6/

  15. Role of intercalation in the electrical properties of
    nucleic acids for use in molecular electronics, H. Mohammad, B. Demir, C. Akin, B. Luan, J. Hihath, E. E. Oren, and M. P. Anantram, Nanoscale Horizons, Volume 6, Issue 8, Pages 651-660 (2021); https://doi.org/10.1039/d1nh00211b/

  16. Mechanism for Unipolar Reset in Negative
    Thermophoresis Resistive Memory Devices, X. Xu, and M. P. Anantram, IEEE Transactions on Electron Devices, Volume 67, Number 12, Pages 5815-5818 (2020); https://doi.org/ 10.1109/TED.2020.3028319/
  17. Molecular Control of Charge Carrier and Seebeck Coefficient in Hybrid Two-Dimensional Nanoparticle Superlattices, C. E. McCold, L. Domulevicz, Z. Cai, W-Y. Lo, S. Hihath, K. March, H. M. Mohammad, M. P. Anantram, L. Yu, and J. Hihath, The Journal of Physical Chemistry C, Volume 124, Issue 1, Pages 17-24 (2020); https://doi.org/10.1021/acs.jpcc.9b08185/
  18. Kinetic Monte Carlo Simulation of Interface-Controlled Hafnia-Based Resistive Memory, X. Xu, B. Rajendran, and M. P. Anantram, in IEEE Transactions on Electron Devices, Volume 67, Number 1, Pages 118-124 (2020); https://doi.org/10.1109/TED.20192953917/
  19. Detection and identification of genetic material via single-molecule conductance, Y. Li, J. M. Artés, B. Demir, S. Gokce, H. M. Mohammad, M. Alangari, M. P. Anantram, E. E. Oren & J. Hihath, Nature Nanotechnology, Volume 13, Pages 1167-1173 (2018); https://doi.org/10.1038/s41565-018-0285/
  20. Engineering of the resistive switching properties in V2O5 thin film by atomic structural transition: Experiment and theory, Z. Wan, H. Mohammad, Y. Zhao, C. Yu, R. B. Darling, M. P. Anantram, Journal of Applied Physics, Volume 124, Issue 10, 5301 (2018); https://doi.org/10.1063/1.5045826/
  21. Impact of doping on bonding energy hierarchy and melting of phase change materials, J. Liu, E. Wang, Y. Zhao, X. Xu, J-S. Moon, M. P. Anantram, Journal of Applied Physics, Volume 124, Issue 9, 4503 (2018); https://doi.org/10.1063/1.5039831/
  22. Bipolar Resistive Switching Characteristics of Thermally Evaporated V2O5 Thin Films, Z. Wan, H. Mohammad, Y. Zhao, R. B. Darling and M. P. Anantram, in IEEE Electron Device Letters, Volume 39, Number 9, Pages 1290-1293 (2018); https://doi.org/10.1109/LED.2018.2855199/
  23. Nanoink bridge-induced capillary pen printing for chemical sensors, S-J. Kahng, C. Cerwyn, B. M. Dincau, J-H. Kim, I. V Novosselov, M. P. Anantram, and J-H. Chung, Nanotechnology, Volume 29, Number 33, 5304 (2018); https://doi.org/10.1088/1361-6528/aac84a
  24. Gunn-Hilsum Effect in Mechanically Strained Silicon Nanowires: Tunable Negative Differential Resistance, D. Shiri, A. Verma, R. Nekovei, A. Isacsson, C. R. Selvakumar, and M. P. Anantram, Scientific Reports, Volume 8, Issue 1, pp. 6273 (2018); https://doi.org/10.1038/s41598-018-24387-y/
  25. Reversible phase-change behavior in two-dimensional antimony telluride (Sb2Te3) nanosheets, R. B. Jacobs-Gedrim, M. T. Murphy, F. Yang, N. Jain, M. Shanmugam, E. S. Song, Y. Kandel, P. Hesamaddin, Hong Y. Y., M. P. Anantram, D. B. Janes, and B. Yu, Applied Physics Letters, Volume 112, Issue 13, 3101 (2018); https://doi.org/10.1063/1.5013099/
  26. Analysis of electrical-field-dependent Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer, J. Liu, M. Shi, J. Lu, M. P. Anantram, Physical Review B, Volume 97, Issue 5, 4416 (2018); https://doi.org/10.1103/PhysRevB.97.054416/
  27. Extenuated interlayer scattering in double-layered graphene/hexagonal boron nitride heterostructure, N. Jain, F. Yang, R. B. Jacobs-Gedrim, X. Xu, M. P. Anantram, B. Yu, Carbon, Volume 126, Pages 17-22 (2018); https://doi.org/10.1016/j.carbon.2017.09.074/
  28. A forming-free bipolar resistive switching behavior based on ITO/V2O5/ITO structure, Z. Wan, R. B. Darling, A. Majumdar, M. P. Anantram, Applied Physics Letters, Volume 111, Issue 4, 1601 (2017); https://doi.org/10.1063/1.4995411/
  29. Photo absorption enhancement in strained silicon nanowires: An atomistic study, D. Shiri, M. G. Rabbani, J. Qi, A. K. Buin, and M. P. Anantram, Journal of Applied Physics, Volume 122, Number 3, 4302 (2017); http://doi.org/10.1063/1.4993587/
  30. Moderate bending strain induced semiconductor to metal transition in Si nanowires, M. G. Rabbani, S. R. Patil, and M. P. Anantram, Semiconductor Science and Technology, Volume 31, Issue 12, pp. 5019 (2016); https://doi.org/10.1088/0268-1242/31/12/125019/
  31. Negative Differential Resistance in Graphene Boron Nitride Heterostructure Controlled by Twist and Phonon-Scattering, Y. Zhao, Z. Wan, U. Hetmanuik, and M. P. Anantram, in IEEE Electron Device Letters, Volume 37, Number 9, Pages 1242-1245 (2016); https://doi.org/10.1109/LED.2016.2595522/
  32. Nested dissection solver for transport in 3D nano-electronic devices, Y. Zhao, U. Hetmaniuk, S. R. Patil, J. Qi, and M. P. Anantram, Journal of Computational Electronics, Volume 15, Number 2, Pages 708-720 (2016); https://doi.org/10.1007/s10825-015-0778-x/
  33. Comparing Charge Transport in Oligonucleotides: RNA:DNA Hybrids and DNA Duplexes, Y. Li, J. M. Artés, J. Qi, I. A. Morelan, P. Feldstein, M. P. Anantram, and J. Hihath, Journal of Physical Chemistry Letters, Volume 7, Number 10, Pages 1888–1894 (2016); https://doi.org/10.1021/acs.jpclett.6b00749/
  34. Photon Induced Negative Capacitance in Metal Oxide Semiconductor Structures, A. Roudsari, I. Khodadad, S. Saini, and M. P. Anantram, IEEE Transactions on Nanotechnology, Volume 15, Number 5, Page 715-719 (2016); https://doi.org/10.1109/TNANO.2016.2519897/
  35. Tailoring optical absorption in silicon nanostructures from UV to visible light: A TDDFT study, W. M. I. Hassan, M. P. Anantram, R. Nekovei, M. M. Khader, A. Verma, Solar Energy, Volume 126, Pages 44-52 (2016); http://doi.org/10.1016/j.solener.2015.11.030/
  36. Zero-bias photocurrents in highly-disordered networks of Ge and Si nanowires, M. G. Rabbani, S. R. Patil, A. Verma, J. E. Villarreal, B. A. Korgel, R. Nekovei, M. M. Khader, R. B. Darling, and M. P. Anantram, Nanotechnology, Volume 27, Number 4, 5201 (2016); http://doi.org/10.1088/0957-4484/27/4/045201/
  37. Programmable diode/resistor-like behavior of nanostructured vanadium pentoxide xerogel thin film, Z. Wan, R. B. Darling, and M. P. Anantram, Physical Chemistry Chemical Physics, Volume 17, Pages 30248-30254 (2015); http://doi.org/10.1039/C5CP04755B/
  38. Conformational Gating of DNA Conductance, J. M. Artés, Y. Li, J. Qi, M. P. Anantram, and J. Hihath, Nature Communications, Volume 6, pp. 8870 (2015); https:/doi.org/10.1038/ncomms9870/
  39. The role of cytosine methylation on charge transport through a DNA strand, J. Qi, N. Govind, and M. P. Anantram, The Journal of Chemical Physics, volume 143, Issue 9, 4306 (2015); http://doi.org/10.1063/1.4929909/
  40. Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis, Y. Zhao, Z. Wan, X. Xu, S. R. Patil, U. Hetmaniuk, and M. P. Anantram, Scientific Reports, Volume 5, 10712 (2015); https://doi.org/10.1038/srep10712/
  41. A Reduced-Order Method for Coherent Transport Using Green’s Functions, U. Hetmaniuk, D. Ji, Y. Zhao, and M. P. Anantram, in IEEE Transactions on Electron Devices, Volume 62, Number 3, Pages 736-742 (2015); https://doi.org/10.1109/TED.2015.2395420/
  42. Modeling of dual-metal Schottky contacts based silicon micro and nano wire solar cells, M. G. Rabbani, A. Verma, M. M. Adachi, J. P. Sundararajan, M. M. Khader, R. Nekovei, and M. P. Anantram, Solar Energy Materials and Solar Cells, Volume 130, Pages 456-465 (2014); http://doi.org/10.1016/j.solmat.2014.07.015/
  43. Conduction in alumina with atomic scale copper filaments, X. Xu, J. Liu, and M. P. Anantram, Journal of Applied Physics, Volume 116, Number 16, 3701 (2014); http://doi.org/10.1063/1.4898073/
  44. Role of inelastic electron-phonon scattering in electron transport through ultra-scaled amorphous phase change material nanostructures, J. Liu, X. Xu, and M. P. Anantram, Journal of Computational Electronics, Volume 13, Pages 620-626 (2014); http://doi.org/10.1007/s10825-014-0579-7/
  45. Subthreshold Electron Transport Properties of Ultrascaled Phase Change Memory, J. Liu, X. Xu, and M. P. Anantram, in IEEE Electron Device Letters, Volume 35, Number 5, Pages 533-535 (2014); https://doi.org/10.1109/LED.2014.2311461
  46. Modeling of electron transport in biomolecules: Application to DNA, M. P. Anantram and J. Qi, 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, pp. 32.3.1-32.3.4 (2013); https://doi.org/10.1109/IEDM.2013.6724736/
  47. A multi-scale analysis of the crystallization of amorphous germanium telluride using ab initio simulations and classical crystallization theory, J. Liu, X. Xu, L. Brush, and M. P. Anantram, Journal of Applied Physics, Volume 115, Number 2, 3513 (2014); http://doi.org/10.1063/1.4861721/
  48. H+-type and OH−-type biological biomolecules semiconductors and complementary devices, Y. Deng, E. Josberger, J. Jin, A. F. Rousdon, B. A. Helms, C. Zhong, M. P. Anantram, and M. Rolandi, Scientific Reports, Volume 3, 2481 (2013); https://doi.org/10.1038/srep02481/
  49. A nested dissection approach to modeling transport in nanodevices: Algorithms and applications, U. Hetmaniuk, Y. Zhao, and M. P. Anantram, International Journal for Numerical Methods in Engineering, Volume 95, Pages 587-207 (2013); https://doi.org/10.1002/nme.4518/
  50. Core-shell silicon nanowire solar cells, M. Adachi, K. Karim, and M. P. Anantram, Scientific Reports, Volume 3, 1546 (2013); https://doi.org/10.1038/srep01546/
  51. Low-bias electron transport properties of germanium telluride ultrathin films, J. Liu and M. P. Anantram, Journal of Applied Physics, Voume 113, Number 6, 3711 (2013); https://doi.org/10.1063/1.4790801/
  52. Unified model for conductance through DNA with the Landauer-Buttiker formalism, J. Qi, N. Edirisinghe, M. G. Rabbani, and M. P. Anantram, Physical Review B, Volume 87, Issue 8, pp. 5404 (2013); https://doi.org/10.1103/PhysRevB.87.085404/
  53. Reversible Modulation of Spontaneous Emission by Strain in Silicon Nanowires, D. Shiri, A. Verma, C. R. SSelvakumar, and M. P. Anantram, Scientific Reports, Volume 2, 461 (2012),  http://doi.org/10.1038/srep00461/
  54. A polysaccharide bioprotonic field-effect transistor, C. Zhong, Y. Deng, A. F. Roudsari, A.  Kapetanovic, M. P. Anantram, and M. Rolandi, Nature Communications, Volume 2, 476 (2011), https://doi.org/10.1038/ncomms1489/
  55. Scaling Analysis of Nanowire Phase-Change Memory, J. Liu, B. Yu, and M. P. Anantram, in IEEE Electron Device Letters, Volume 32, Issue 10, Pages 1340-1342 (2011); https://doi.org/10.1109/LED.2011.2162390/
  56. High Gain Multiple-Gate Photodetector with Nanowires in the Channel, A. Fadavi, S. Saini, N. O, and M. P. Anantram, in IEEE Electron Device Letters, Volume 32, Issue 3, Pages 357-359 (2011); https://doi.org/10.1109/LED.2010.2103044/
  57. Optical Properties of Crystalline-Amorphous Core – Shell Silicon Nanowires, M. M. Adachi, M. P. Anantram, and K. S. Karim, Nano Letters, Volume 10, Pages 4093-4097 (2010); https://doi.org/10.1021/nl102183x/
  58. High-field hold transport in silicon nanowires, A. Verma, A. K. Buin, and M. P. Anantram, Journal of Applied Physics, Volume 106, Issue 11, 3713 (2009); https://doi.org/10.1063/1.3264629/
  59. Ballistic Quantum Simulators for Studying Variability in Nanotransistors, A. Martinez, J. R. Barker, A. Svizhenko, A. Anantram, M. Bescond, and A. Asenov, Journal of Computational and Theoretical Nanoscience, Volume 5, Pages 1–22 (2008); https://doi.org/10.1166/jctn.2008.1201/
  60. Carrier-phonon interaction in small cross-sectional silicon nanowires, A. Buin, A. Verma, and M. P. Anantram, Journal of Applied Physics, Volume 104, Issue 5, 3716 (2008); https://doi.org/10.1063/1.2974088/
  61. Strain induced change of bandgap and effective mass in silicon nanowires, D. Shiri, Y. Kong, A. Buin, and M. P. Anantram, Applied Physics Letters, Volume 93, Issue 7, pp. 3114 (2008); https://doi.org/10.1063/1.2973208/
  62. Significant Enhancement of Hole Mobility in [110] Silicon Nanowires Compared to Electrons and Bulk Silicon, A. Buin, A. Verma, A. Svizhenko, and M. P. Anantram, Nano Letters, Volume 8, Number 2, Pages 760-765 (2008); https://doi.org/10.1021/nl0727314/
  63. Modeling of Nanoscale Devices, M. P. Anantram, M. Lundstrom and D. Nikonov, in Proceedings of the IEEE, Volume 96, Number 9, Pages 1511-1550 (2008); https://doi.org/10.1109/JPROC.2008.927355/
  64. Multi-dimensional modeling of nanotransistors, M. P. Anantram and A. Svizhenko, in IEEE Transactions on Electron Devices, Volume 54, Number 9, Pages 2100-2115 (2007); https://doi.org/10.1109/TED.2007.902857/
  65. A Self-Consistent Full 3-D Real-Space NEGF Simulator for Studying Nonperturbative Effects in Nano-MOSFETs, A. Martinez, M. Bescond, J. R. Barker, A. Svizhenko, M. P. Anantram, C. Millar, A. Asenov, in IEEE Transactions on Electron Devices, Volume 54, Number 9, Pages 2213-2222 (2007); https://doi.org/10.1109/TED.2007.902867/
  66. The impact of random dopant aggregation in source and drain on the performance of ballistic DG Nano-MOSFETs: A NEGF study, A. Martinez, J. R. Barker, A. Svizhenko, M. P. Anantram, A. Asenov, in IEEE Transactions on Nanotechnology, Volume 6, Number 4, Pages 438-445 (2007); https://doi.org/10.1109/TNANO.2007.899638/
  67. Developing a full 3D NEGF simulator with random dopant and interface roughness, A. Martinez, J. R. Baker, A. Asenov, A. Svizhenko, and M. P. Anantram, Journal of Computational Electronics, Volume 6, Pages 215-218 (2007); https://doi.org/10.1007/s10825-006-0104-8/
  68. Non-equilibrium Green’s function treatment of phonon scattering in carbon nanotube transistors, S. O. Koswatta, S. Hasan, M. S. Lundstrom, M. P. Anantram, and D. E. Nikonov, in IEEE Transactions on Electron Devices, Volume 54, Number 9, Pages 2339-2351 (2007); https://doi.org/10.1109/TED.2007.902900/
  69. Carbon nanotube electronic devices, M. P. Anantram and F. Leonard, Reports of Progress in Physics, Volume 69, Pages 507-561 (2006); https://doi.org/10.1088/0034-4885/69/3/R01/
  70. Ballisticity of nanotube field-effect transistors: Role of phonon energy and gate bias, S. O. Koswatta, S. Hasan, M. S. Lundstrom, M. P. Anantram, and D. E. Nikonov, Applied Physics Letters, Volume 89, Issue 2, 3125 (2006); https://doi.org/10.1063/1.2218322/
  71. Influence of defects on nanotube transistor performance, N. Neophytou, D. Kienle, E. Polizzi, and M. P. Anantram, Applied Physics Letters, Volume 88, Issue 24, 2106 (2006); https://doi.org/10.1063/1.2211932/
  72. Inter-base electronic coupling for transport through DNA, H. Mehrez and M. P. Anantram, Physical Review B, Volume 71, Issue 11, 5405 (2005); https://doi.org/10.1103/PhysRevB.71.115405/
  73. Electronic properties of O2-doped DNA, H. Mehrez, S. Walch, and M. P. Anantram, Physical Review B, Volume 72, Issue 3, 5441 (2008); https://doi.org/10.1103/PhysRevB.72.035441/
  74. Comparison of non-equilibrium Green’s function and quantum-corrected Monte Carlo approaches in nano MOS simulation, H. Tsuchiya, A. Svizhenko, M. P. Anantram, M. Ogawa, and T. Miyoshi, Journal of Computational Electronics, Volume 4, Pages 35-38 (2005); https://doi.org/10.1007/s10825-005-7103-z/
  75. Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors, S. O. Koswatta, M. S. Lundstrom, M. P. Anantram, and D. E. Nikonov, Applied Physics Letters, Volume 87, Issue 25, 3107 (2005); https://doi.org/10.1063/1.2146065/
  76. Effect of scattering and contacts on current and electrostatics in carbon nanotubes, A. Svizhenko and M. P. Anantram, Physical Review B, Volume 72, Issue 8, 5430 (2005); https://doi.org/10.1103/PhysRevB.72.085430/
  77. Analysis of band gap formation in squashed arm-chair CNT, H. Mehrez, A. Svizhenko, M. P. Anantram, M. Elstner, and T. Fraunheim, Physical Review B, Volume 71, Issue 15, 5421 (2005); https://doi.org/10.1103/PhysRevB.71.155421/
  78. Ballistic transport and electrostatics in carbon nanotubes, A. Svizhenko, M. P. Anantram, and T. R.Govindan, Volume 4, Number 5, Pages 557-562 (2005); https://doi.org/10.1109/TNANO.2005.851409/
  79. Atomistic simulation of carbon nanotube field effect transistors using non equilibrium Green’s function formalism, J. Guo, S. Datta, M. P. Anantram and M. Lundstrom, Journal of Computational Electronics, Volume 3, Pages 373-377 (2004); https://doi.org/10.1007/s10825-004-7080-7/
  80. Influence of counter-ion-induced disorder in DNA conduction, Ch. Adessi, S. Walch, and M. P. Anantram, Applied Physics Letters, Volume 82, Pages 2353-2355 (2003); https://doi.org/10.1063/1.1563811/
  81. Environment and structure influence on DNA conduction, Ch. Adessi, S. Walch, and M. P. Anantram, Physical Review B, vol. 67, Issue 8, 1405(R) (2003); https://doi.org/10.1103/PhysRevB.67.081405/
  82. Role of Scattering in Nanotransistors, A. Svizhenko and M. P. Anantram, in IEEE Transactions on Electron Devices, Volume 50, Number 6, Pages 1459-1466 (2003); https://doi.org/10.1109/TED.2003.813503/
  83. Bonding geometry and bandgap changes of carbon nanotubes under uniaxial and torsional strain, L. Yang, J. Han, M. P. Anantram, R. L. Jaffe, Computer Modeling in Engineering & Sciences, Volume 3, Pages 675-685 (2003); https://doi.org/10.3970/cmes.2002.003/675/
  84. Two Dimensional Quantum Mechanical Modeling of Nanotransistors, A. Svizhenko, M. P. Anantram, T. R. Govindan, B. Biegel, and R. Venugopal, Journal of Applied Physics, Volume 91, Pages 2343-2354 (2002); https://doi.org/10.1063/1.1432117/
  85. Atomistic simulations with carbon nanotubes-classical, quantum, and transport modeling, A. Maiti, J. Andzelm, A. Svizhenko, M. P. Anantram, M. Panhuis, Physica Status Solidi B (Germany), Volume 233, Issue 1, Pages 49-58 (2002); https://doi.org/10.1002/1521-3951(200209)233:1<49:AID-PSSB49>3.0.CO;2-8/
  86. Electronic Transport through Carbon Nanotubes: Effects of Structural Deformation and Tube Chirality, A. Maiti, A. Svizhenko, and M. P. Anantram, Physical Review Letters, Volume 88, Issue 12, 6805 (2002); https://doi.org/10.1103/PhysRevLett.88.126805/
  87. Nanotubes in nanoelectronics: transport, growth and modeling, M. P. Anantram, L. Delzeit, A. Cassell, J. Han, and M. Meyyappan, Physica E, Volume 11, Issues 2-3, Pages 118-125 (2001); https://doi.org/10.1016/S1386-9477(01)00187-4/
  88. Resonant versus anti-resonant tunneling at carbon nanotube A-B-A heterostructures, N. Mingo, L. Yang, J. Han, and M. P. Anantram, Physica Status Solidi B, Volume 226, Issue 1, Pages 79-85 (2001); https://doi.org/10.1002/1521-3951(200107)226:1<79::AID-PSSB79>3.0.CO;2-5/
  89. Potential drop along carbon nanotube devices with current flow, N. Mingo, J. Han, M. P. Anantram, and L. Yang, Surface Science, Volumes 482-485, Part 2, Pages 1130-1134 (2001); https://doi.org/10.1016/S0039-6028(01)00734-8/
  90. Which nanowire couples better to a metal contact: Armchair or Zigzag nanotube?, M. P. Anantram, Applied Physics Letters, Volume 78, Number 14, Pages 2055-2057 (2001); https://doi.org/10.1063/1.1360228/
  91. Current-carrying capacity of nanotubes, M. P. Anantram, Physical Review B, Volume 62, Number 8, Pages 4837-4840 (2000); https://doi.org/10.1103/PhysRevB.62.R4837/
  92. Coupling of carbon nanotubes to metallic contacts, M. P. Anantram, S. Datta, and Y. Xue, Physical Review B, Volume 61, Number 20, Pages 14219-14224 (2000); https://doi.org/10.1103/PhysRevB.61.14219/
  93. Transport through nanotubes with polyhedral caps, M. P. Anantram and T. R. Govindan, Physical Review B, Volume 61, Page 5020 (2000); https://doi.org/10.1103/PhysRevB.61.5020/
  94. Bandgap change of carbon nanotubes: Effect of small uniaxial and torsional strain, L. Yang, M. P. Anantram, J Han, and J. P. Lu, Physical Review B, Volume 60, Number 19, Pages 13874-13878 (1999); https://doi.org/PhysRevB.60.13874/
  95. Spatially correlated qubit errors and burst-correcting quantum codes, F. Vatan, V. P. Roychowdhury, and M. P. Anantram, IEEE Transactions on Information Theory, Volume 45, pp. 1703 (1999); https://doi.org/10.48550/arXiv.quant-ph/9704019/
  96. Metastable states and information propagation in a one-dimensional array of locally coupled bistable cells, M. P. Anantram and V. P. Roychowdhury, Journal of Applied Physics, Volume 85, Pages 1622-1625 (1999); https://doi.org/10.1063/1.369295/
  97. Single Particle Transport through Carbon Nanotube Wires: Effect of Defects and Polyhedral Cap, M. P. Anantram and T. R. Govindan, In: Science and Application of Nanotubes. Fundamental Materials Research; https://doi.org/10.1007/0-306-47098-5_11/
  98. Conductance in carbon nanotubes with defects: A numerical study, M. P. Anantram and T. R. Govindan, Physical Review B, Volume 60, Page 4882 (1998); https://doi.org/10.1103/PhysRevB.58.4882/
  99. Observation and Modeling of Single Wall Carbon Nanotube Bend Junctions, J. Han, M. P. Anantram, R. Jaffe, and H. Dai, Physical Review B, vol. 57, p. 14983 (1998); https://doi.org/10.1103/PhysRevB.57.14983/
  100. Transport in Carbon Nanotubes with Defects, M. P. Anantram, J. Han and T. R. Govindan, Ann. of the New York Acad. of Sc. vol. 852, p. 169 (1998)
  101. Charging effects in the ac conductance of a double barrier resonant tunneling structure, M. P. Anantram, Journal of Physics: Condensed Matter, vol. 10, p. 9015 (1998)
  102. *Fundamental issues in atomic/nanoelectronic computation, M. P. Anantram and V. P. Roychowdhury, In: Paulraj, A., Roychowdhury, V., Schaper, C.D. (eds) Communications, Computation, Control, and Signal Processing, Pages 309-329; https://doi.org/10.1007/978-1-4615-6281-8_17/
  103. Scattering Theory of Mesoscopic Superconductivity, S. Datta, P. F. Bagwell, and M. P. Anantram, Physics of Low Dimensional Structures Volume 3, Page 1 (1996)
  104. Current Fluctuations in Mesoscopic Systems with Andreev Scattering, M. P. Anantram and S. Datta, Physical Review B, Volume 53, Page 16390 (1996); https:/doi.org/10.1103/PhysRevB.53.16390/
  105. Effect of Phase-Breaking on the ac Response of Mesoscopic Systems, M. P. Anantram and S. Datta, Physical Review B, Volume 51, Page 7632 (1995); https://doi.org/10.1103/PhysRevB.51.7632/
  106. Resonant Tunneling Devices: Effect of Scattering, S. Datta, G. Klimeck, R. K. Lake and M. P. Anantram, Inst. Phys. Conf. Ser. No. 141, Chapter 7, p. 775 (1995)
  107. Rate Equations for the Phonon Peak in Resonant Tunneling Diodes, R. K. Lake, G. Klimeck, M. P. Anantram and S. Datta, Physical Review B, vol. 48, Page 15132 (1993); https://doi.org/10.1103/PhysRevB.48.15132/
  108. Steady-State Transport in Mesoscopic Systems Illuminated by Alternating Fields, S. Datta and M. P. Anantram, Physical Review B, Volume 45, Page 13761(R) (1992); https://doi.org/10.1103/PhysRevB.45.13761/

*Starred publications are unavilable in pdf form. 

Patents

Nucleic Acid-based Electrically Readable, Read-only Memory

This patent describes a novel memory technology that utilizes DNA as a medium for electrically readable, read-only memory applications. The approach leverages the unique properties of DNA for data storage, potentially leading to advancements in data density and stability compared to traditional memory technologies. The innovation aims to enhance the efficiency and capacity of memory devices in the digital landscape.

Google Patents Link: https://patents.google.com/patent/US20220005870A1/en

Photodetector Cell and Solar Panel with Dual Metal Contacts

This patent outlines a design for a photodetector cell and solar panel that incorporates dual metal contacts to improve performance. The dual-contact configuration enhances the efficiency of light absorption and charge collection, making it suitable for various applications in renewable energy and photodetection. The technology aims to optimize energy conversion processes, contributing to more effective solar energy solutions.

Google Patents Link: https://patents.google.com/patent/US20180261705A1/en

Strain Modulated Nanostructures for Optoelectronic Devices

This patent presents a method for creating strain-modulated nanostructures that enhance the performance of optoelectronic devices. By manipulating strain within nanostructures, the invention aims to improve the efficiency and functionality of devices such as photodetectors and light-emitting diodes. This innovation has significant implications for advancing optoelectronic technologies and their applications in communication and sensing.

Google Patents Link: https://patents.google.com/patent/US9065253B2/en

Software

MolTran

MolTran is a computational tool developed to calculate transport properties in molecular systems while accounting for decoherence effects. This software allows researchers to analyze how environmental interactions influence electronic transport, which is crucial for understanding molecular electronics. The code is particularly useful for studying multi-terminal devices and provides insights into the efficiency of quantum transport in disordered materials.

glessUW

GlessUW is a nanodevice simulation software released by CoMotion at the University of Washington, designed to facilitate the modeling and analysis of nano-scale devices. The software offers tools for simulating various physical phenomena in nanotechnology, making it a valuable resource for researchers and engineers in the field. Its public release enhances accessibility for academic and industrial applications, promoting further innovation in nanodevice research.

Two-dimensional Quantum Simulator

The Two-dimensional Quantum Simulator, developed at NASA’s Ames Research Center, is a public release software that enables the simulation of quantum mechanical systems in two dimensions. This tool is designed for researchers exploring quantum phenomena and their applications in technology, providing a platform to model and analyze quantum behavior effectively. Its capabilities support advancements in fields such as quantum computing and materials science.

NanoFET

NanoFET is a simulation tool created to model the electrical characteristics of nanoscale field-effect transistors. This software, available on NanoHub, allows users to explore the performance of various nanodevice architectures and their potential applications in future electronics. By providing a platform for detailed analysis, NanoFET aids researchers in optimizing device designs for improved functionality and efficiency.