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Abstract Infants rapidly learn language in their home environments. Between 6 and 12

months of age, infants’ ability to process the building blocks of speech (i.e., phonetic

information) develops quickly, and this ability predicts later language development.

Typically, developing infants in a monolingual language environment rapidly tune in to the

phonetic information of their native language, while their sensitivity to nonnative phonetic

information starts to decrease. Yet, enriched experience to a new language during this time

significantly improves infants’ sensitivity to the sound contrasts used in that language when

compared to a control group without exposure to the new language. More recently, a new

study examined another type of enriched auditory experience—musical experience—to

determine its effect not only on music processing but also on phonetic processing. Results

showed that a 1-month laboratory music intervention focusing on rhythm learning

enhanced 9-month-old infants’ neural processing not only for music but also for speech.

Together, these results suggest that these enriched auditory experiences in infancy may

improve infants’ general auditory pattern-detection skills and their sensitivity to phonetic

information.
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In many species, the young are particularly sensitive to environmental inputs at certain

periods during development. The barn owl’s ability to localize prey is calibrated by

auditory-visual input during an early sensitive period in development; wearing prisms (or
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ear plugs) alters the mapping during this period (Knudsen 2002). Binocular fusion is

dependent on binocular visual input during a critical period early in development; rearing

cats with one occluded eye irreversibly alters binocular representation in the visual centers

of the cortex (Hubel and Wiesel 1977; Shatz and Stryker 1978). In songbirds, learning their

species-typical song depends on experience during a critical temporal window; presenta-

tion of conspecific song during that time is essential for normal development (Konishi

1985; Marler 1970). A recent theoretical paper (Werker and Hensch 2015) discusses the

nature of the ‘‘critical’’ periods, especially the biological factors that ‘‘open’’ and ‘‘close’’

them. Here, we review work from our laboratory that focuses on one specific time period

for human infants’ learning; namely, the ‘‘sensitive period’’ for phonetic learning and the

experiential factors that may influence this learning process. We first discuss the devel-

opmental trajectory of infants’ abilities to discriminate native and nonnative phonetic

contrasts between 6 and 12 months of age, and then several experiential factors we have

observed in laboratory studies that influence infants’ ability to discriminate speech sounds

during this sensitive period. Lastly, we discuss future directions for research that will help

elucidate the mechanisms through which these experiential factors exert their influences.

Early phonetic learning

Infants’ language learning starts early in development. Infants’ speech perception skills

show a dual change toward the end of the first year of life (Figure 1). Not only does

nonnative speech perception decline (Best and McRoberts 2003; Werker and Tees 1984),

but, also, native-language speech perception skills show improvement, reflecting a facil-

itative effect of experience with native language (Kuhl et al. 2006; Tsao, Liu, and Kuhl

2006). The mechanism underlying change during this sensitive period in development, and

the relationship between the change in native and nonnative speech perception, is of

theoretical interest. Data show that at the cusp of this developmental change, infants’

native and nonnative phonetic perception skills predict later language ability, but in

opposite directions (Figure 2) (Kuhl et al. 2008). Better native phonetic discrimination at

7.5 months predicts faster native-language advancement; whereas better nonnative pho-

netic discrimination predicts slower native-language advancement. We have argued that

Figure 1 Effects of age on discrimination of the American English /ra/-/la/ phonetic contrast by American
and Japanese infants at 6–8 and 10–12 months of age
Note: Mean percent correct scores are shown with standard errors indicated.
Source: Kuhl (2004)
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this pattern of results is indicative of ‘‘neural commitment’’ to the native language and

reflects infant attention to the acoustic cues made available by language input, especially

language input in the form of ‘‘motherese’’ (more recently termed ‘‘parentese’’ because

both mothers and fathers use it) in one-on-one social contexts (Ramirez-Esparza, Garcia-

Sierra, and Kuhl 2014, 2016). That is, better skills in native phonetic discrimination

support neural network development, which allows more efficient processing of native

speech sounds. Alternatively, better skills in nonnative phonetic perception reveal

uncommitted neural circuitry that is less efficient for processing native speech sounds (see

Kuhl 2004, Kuhl et al. 2008, for elaboration).

Social influences on phonetic learning during the sensitive period

During infants’ sensitive period for phonetic learning, between 6 and 12 months of age,

studies show that infant perception of speech is highly malleable. During this time, lab-

oratory experiments indicate that distributional and statistical learning can occur with just

two minutes’ exposure to novel speech material (e.g., Maye, Werker, and Gerken 2002;

Saffran, Aslin, and Newport 1996). However, studies have also shown strong social

influences in their investigations of whether infants are capable of phonetic learning at 9

months of age from natural first-time exposure to a foreign language (Conboy and Kuhl

2011; Kuhl, Tsao, and Liu 2003). Kuhl and colleagues (Kuhl, Tsao, and Liu 2003), in a

foreign-language intervention experiment, exposed 9-month-old infants to Mandarin

Chinese, a language with prosodic and phonetic structure very different from English.

Infants heard 4 native speakers of Mandarin (2 male, 2 female) during twelve 25-minute

sessions of book reading and play during a 4–6 week period. A control group of infants

also came into the laboratory for the same number and variety of reading and play sessions,

but heard only English. On average, infants heard about 33,000 Mandarin syllables during

the course of the 12 language-exposure sessions. Researchers tested two additional groups

of infants; they exposed one group to Mandarin language material on a video screen, and

presented the second group the exact same Mandarin material in the same room and on the

same timetable but in an audio-only condition (Figure 3).

Figure 2 A median split of infants whose MMNs indicate better versus poorer discrimination of (a) native
and (b) nonnative phonetic contrasts is shown, along with their corresponding longitudinal growth curve
functions for the number of words produced between 14 and 30 months of age
Source: Kuhl et al. (2008)
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After exposure, researchers tested all 4 groups on Mandarin phonetic discrimination.

The results from behavioral tests (conditioned head-turn, see Kuhl et al. 2006) on infants

after exposure demonstrated that only the group exposed to Mandarin in a social context by

live humans learned the Mandarin contrast. The data demonstrated two things: (a) phonetic

learning from first-time exposure can occur at 9 months of age, and (b) phonetic learning

from natural language exposure during the sensitive period requires social interaction.

Similar second-language exposure experiments using Spanish explored both phonetic and

word learning, as well as the degree to which social factors, such as visual attention, during

Figure 3 Foreign-language learning experiments show the need for social interaction in language
acquisition
Notes: Nine-month-old infants experienced 12 sessions of Mandarin Chinese through a natural interaction
with a Chinese speaker (left) or the identical linguistic information delivered via television (right) or
audiotape (not shown). b Natural interaction resulted in significant learning of Mandarin phonemes when
compared with a control group who participated in interaction using English (left). No learning occurred
from television or audiotaped presentations (middle). Data for age-matched Chinese and American infants
learning their native languages are shown for comparison (right).
Source: Adapted from Kuhl, Tsao, and Liu (2003)
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the exposure sessions predict individuals’ learning. Using brain measures (event-related

potential, ERP, measures; see Kuhl et al. 2008), the results with Spanish replicated pre-

vious findings using Mandarin; additionally, they show that English phonetic discrimina-

tion does not decline—in fact, it increases, as expected, as Spanish contrast learning

increases (Conboy and Kuhl 2011). Moreover, analyses of the video records revealed a

significant positive relationship between infants’ social skills—which allowed them to shift

gaze between the foreign-language tutor and the toys as the tutor held new toys and named

them in the foreign language—and increased neural responsiveness to the Spanish contrast

(Conboy, Brooks, Meltzoff, and Kuhl 2015). These correlations between social responses

and brain measures of learning buttress the argument that infants’ social skills are coupled

to language learning.

The data on infant speech-perception reviewed above suggest that infants are very

sensitive to social language input during the period between 6 and 12 months. Infants’

sensitivity is so high that even a foreign language introduced for the first time at 9 months

causes robust phonetic learning when it is delivered in a social context. This leads to the

hypothesis that the mechanisms underlying infant speech-perception are somehow ‘‘tuned’’

to language input, delivered socially, during this time. The corollary hypothesis is that only

language input can influence these mechanisms at this time.

A recent experiment suggests that the corollary hypothesis must be altered. In the next

section, we review the results of an experiment that exposes infants to music in a way that

is similar to previous experiments using foreign-language interventions during the sensitive

period (Conboy and Kuhl 2011; Kuhl, Tsao, and Liu 2003). In the music intervention,

researchers exposed infants to a particular rhythmical structure in music, the triple meter

(the waltz), for 12 sessions in a social context, using a randomized control design. The

control group experienced similar activities in a social setting, but no music. After 12

sessions, the research team tested both intervention and control infants with violations of

rhythmic structure in both music and speech. The results show effects on both music and

speech, and reveal activation in the infants’ auditory-sensory and prefrontal cortices. In the

remaining sections, we detail these findings and discuss their implications.

Effects of music intervention on infants’ phonetic learning

During the last decade, music training that starts early in development has received

increasing attention in the science community as an important early experience, given the

growing amount of evidence suggesting the robust and extensive training-related benefits

in auditory, language, and cognitive abilities (Kraus and Chandrasekaran 2010; Shahin

2011; Zatorre 2013). Previous studies—using various methodologies, including behavioral,

electrophysiological, and neural imaging methods—have demonstrated repeatedly that

musically trained adults and children exhibit enhanced processing of musical information

(e.g., musical pitch and meter) in comparison to nontrained groups (Fujioka, Ross, Kakigi,

Pantev, and Trainor 2006; Geiser, Sandmann, Jancke, and Meyer 2010; Habibi, Cahn,

Damasio, and Damasio 2016; Koelsch, Schroger, and Tervaniemi 1999; Pantev et al. 1998;

Vuust et al. 2005; Zhao and Kuhl 2015a, b).

More importantly, prior studies have also demonstrated generalization effects in the

trained individuals from their early musical experience to other domains, one of the most

studied being speech processing. The ability to accurately and efficiently process complex

speech sounds is critical in language development as speech processing in infants can
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robustly predict language abilities in early childhood (see ‘‘Early phonetic learning’’

section); and, at the same time, studies have shown that developmental language disorders

(e.g., dyslexia, specific language impairment) have origins in auditory processing deficits

(Goswami 2011; Tallal and Gaab 2006). So far, researchers have found that musically

trained adults and children can better encode the acoustic details in speech at the level of

the brainstem, especially when speech is embedded in noise (Bidelman, Weiss, Moreno,

and Alain 2014; Parbery-Clark, Skoe, Lam, and Kraus Parbery-Clark et al. 2009; Parbery-

Clark, Tierney, Strait, and Kraus 2012; Strait, Parbery-Clark, O’Connell, and Kraus 2013).

At the cortical level, researchers observed musically trained individuals to better process

pitch information in both native and foreign speech compared to nonmusicians; one study

focusing on the temporal information in speech demonstrated that adult musicians could

track syllable structures in words better as well (Magne, Schon, and Besson 2006; Marie,

Magne, and Besson 2011; Marques, Moreno, Castro, and Besson 2007; Wong, Skoe,

Russo, Dees, and Kraus 2007). These cross-domain effects from early music training to

speech perception raise theoretically interesting and important questions about different

levels of processing (e.g., lower-level acoustic processing vs. higher-level cognitive skills)

affected by early experience and how they can support these observed generalization

effects (Kraus and Chandrasekaran 2010).

Following this growing literature, we examined the rich experience of music training in

an even earlier developmental stage (9 months of age) for both theoretical and method-

ological reasons (Zhao and Kuhl 2016). Theoretically, this approach allowed us to compare

the effects of music experience during the sensitive period of phonetic learning to other

previously studied experiences, such as experience of a foreign language (Kuhl, Tsao, and

Liu 2003). Methodologically, (1) we were able to randomly assign infants at this age to

complete either a structured laboratory-controlled music intervention (Intervention) or

control activities (Control). This approach allowed controlling for effects related to pre-

dispositions (e.g., genetics), prior music experience, and the variability in individuals’

music training (e.g., onset, nature, and duration of the music experience); (2) we focused

on temporal information processing, which has less experimental data regarding effects

derived from early music training. In this study, the Intervention targeted infants’ learning

of a specific meter (triple meter—e.g., waltz) and we tested the effects of the Intervention

on both music (metrical structure) and speech (syllable structure); (3) we used neural

responses, measured by magnetoencephalography (MEG), as outcome measures to com-

pare Intervention and Control infants in the spatial and temporal aspects of their cortical

responses.

We predicted enhancement in both music and speech domains, following the rationale

that the Intervention—targeting infants’ learning of a specific meter—exerts influence at a

higher level of processing. We argued that the Intervention infants would become better at

extracting the temporal pattern of complex sounds over time, leading to their ability to

make more robust predictions about the timing of future stimuli based on the extracted

temporal structure—an ability that would affect both music and speech processing.

The design of the Intervention/Control sessions paralleled our prior studies in the

laboratory on infant speech learning at 8–10 months of age (see ‘‘Social influences’’).

Specifically, we recruited 9-month-old infants raised in monolingual English-speaking

environments with comparable prior and concurrent music listening experiences at home,

whose parents were not performing musicians. We randomly assigned infants to the

Intervention or Control group for 12 sessions (15 minutes each), over a 4-week period, of

corresponding activity in the laboratory.
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In the Intervention/Control sessions, we incorporated several key components to

maximize infants’ learning specific to the Intervention while reflecting naturalistic infant

music classes: (1) Intervention infants experienced various infant tunes and songs only in

triple meter (e.g., waltz). We selected triple meter as the target temporal structure because

studies have shown that it is a more difficult temporal structure in Western music for

infants to process at this age than duple meter (e.g., marching music) (Bergeson and

Trehub 2006), yet infants can rapidly learn temporal patterns in the music of their culture

(Gerry, Faux, and Trainor 2010; Hannon and Trehub 2005a, b); (2) Intervention infants,

with the aid of caregivers, tapped out the musical beats with maracas or their feet, and their

caregivers often bounced them in synchronization to the musical beats—activities that are

common in infant music classes and effective in infants’ learning of temporal structure

(Phillips-Silver and Trainor 2005); (3) the Control sessions offered comparable visits to a

laboratory, familiarity with the laboratory environment, levels of social interaction with

other infants and caregivers, and levels of motor activity and engagement, but without

music. For example, infants, aided by their parents, played with toy cars, blocks, and other

objects that required coordinated movements, such as moving and stacking; (4) in both the

Intervention and Control sessions, researchers engaged infants in a social setting with 1–2

other infants and their caregivers, a setting demonstrated in previous work to be effective

when infants are exposed to a foreign language (Kuhl, Tsao, and Liu 2003). Experimenters

facilitated each session by engaging the infants and their caregivers in the activities to a

comparable degree.

To examine whether the intervention enhanced infants’ general ability to extract tem-

poral structure and generate more robust predictions about future stimuli in complex

auditory sounds, we examined Intervention infants’ neural responses to temporal structure

violations in both music and speech in temporal (auditory) and prefrontal cortical regions,

in comparison to their Control group counterparts. We quantified the neural responses by a

specific neural response, namely the mismatch response (MMR), traditionally measured by

an oddball paradigm. In this paradigm, a standard stimulus is presented on approximately

85% of the trials to establish a temporal structure; on the remaining 15% of the trials, a

deviant stimulus that violates this temporal structure is randomly presented on the

remaining 15% of the trials (Figures 4a, 5a). The magnitude of the MMR, which peaks

around 150-350 ms after the violation onset, thus reflects neural sensitivity to the violation

of temporal structure—and thus the tracking and learning of that temporal structure

(Bekinschtein et al. 2009; Schwartze and Kotz 2013; Winkler, Denham, and Nelken 2009).

We recorded neural responses to all stimuli using magnetoencephalography (MEG), which

has excellent temporal resolution and good spatial resolution, allowing the examination of

MMR in the specific time windows of interests (i.e., around 150-350ms post violation) and

in target cortical regions (i.e., temporal and prefrontal regions).

Our results supported our hypotheses and answered our specific questions, demon-

strating that: (1) the Intervention group exhibited a larger MMR response to violations in

temporal structure for music (i.e., triple meter) when compared to the Control group; (2)

the effects were observed in both temporal (auditory) and prefrontal regions of the cortex

(Figure 4b, c); (3) the enhancement in temporal structure processing generalized to the

speech domain, reflected by a larger MMR in temporal and prefrontal cortical regions in

response to violations of a foreign temporal structure in the Intervention group (Figure 5b,

c).

We therefore demonstrated that a short-term laboratory-controlled music intervention at

9 months of age that reflects naturalistic infant music classes affects not only infants’

functional processing of temporal structure in music but also—more importantly—infants’
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processing of syllable structure in speech. We based our prediction of the generalization

effects from the Intervention to speech on the rationale that infants would learn to better

attend to and extract auditory patterns in the temporal domain, allowing them to generate—

from learned patterns—more robust predictions about the timing of future events. Our

results thus strongly supported the idea that such enriched music intervention experience

may support the development of a broader set of perceptual skills.

The design of the Intervention, as well as the use of foreign syllable structure, in the

MEG testing in this study allows us to compare the current results to our previous

experiments examining the effects of foreign-language intervention during this sensitive

period of phonetic learning. In the next section, we discuss in more detail the implications

of the result showing enhanced sensitivity to foreign syllable structure contrasts.

Summary and discussion

In this article, we have introduced the concept of what we term a ‘‘sensitive period’’ for

infants’ phonetic learning between the age of 6 and 12 months (Kuhl 2004). Decades of

research have demonstrated that infants’ ability to discriminate native speech contrasts

Figure 4 Music condition (MEG)
Notes: a Schematics of stimuli; standard and deviant sounds are acoustically identical, and deviants violate
the standard temporal structure. b Top: The group average of the difference waves for the temporal regions
of the cortex for the Intervention group and the Control group. Shaded region indicates the selected time
window for the MMR. Time 0 marks the onset of the strong beat. Bottom: The group average of the
difference waves for the prefrontal regions of the cortex for the Intervention group and the Control group. c
Mean MMR values within the target time window by region (temporal region vs. prefrontal region) and
group (Intervention vs. Control).
Source: Adapted from Zhao and Kuhl (2016)
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improves, in contrast to their ability to discriminate nonnative speech contrasts that

decreases during this period (Kuhl et al. 2006; Werker and Tees 1984). Further, we

discussed that infants’ phonetic learning during this sensitive period is highly malleable,

depending on the auditory input infants receive at that time. The skill to discriminate

nonnative speech contrasts provides a window for us to study how inputs during the

sensitive period can affect infants’ phonetic learning. In a series of studies, we demon-

strated that experience with a foreign language could enhance infants’ ability to dis-

criminate the nonnative speech contrasts in that language. More importantly, language

experience during this time needs to be social in nature—the same input delivered through

a TV screen did not result in learning (Conboy and Kuhl 2011; Kuhl, Tsao, and Liu 2003).

Yet, in our most recent study, we show that a music intervention targeting rhythm learning

during this sensitive period also enhanced infants’ ability to discriminate a nonnative

speech contrast that is based on syllable structure differences.

How does the enriched auditory experience of foreign language and music exert its

influence on infants’ phonetic learning during the sensitive period for phonetic learning?

Previous research has demonstrated the influences of cognitive skills on speech perception

in this period; 11-month old monolingual infants show a strong negative correlation

Figure 5 Speech condition (MEG)
Notes: a Schematics of stimuli; deviants /bibi/ violate the syllable structure of /bibbi/. In a separate
recording (lower panel), /bibi/ served as standards in a constant stream. b Top: The group average of the
difference waves for the temporal regions of the cortex for the Intervention group and the Control group.
Shaded region indicates the selected time window for the MMR, shifted accordingly with the onset of
violation (210ms after the onset of the nonword /bibi/, marked by Time 0). Bottom: The group average of the
difference waves for the prefrontal regions of the cortex for the Intervention group and the Control group. c
Mean MMR values within the target time window by region (temporal region vs. prefrontal region) and
group (Intervention vs. Control).
Source: Adapted from Zhao and Kuhl (2016)
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between specific cognitive controls skills (inhibitory control) and nonnative speech dis-

crimination (Conboy, Sommerville, and Kuhl 2008; Diamond, Werker, and Lalonde 1994;

Lalonde and Werker 1995). The authors’ interpretation is that infants with good inhibitory

control skills are better able to ignore speech sounds that are irrelevant to their native

language, and, therefore, that they exhibit lower nonnative speech discrimination skills,

which has been shown to correlate with faster native-language growth (Figure 2; Kuhl

et al. 2008). On the other hand, literature on infants and children raised in bilingual

language environments demonstrate enhanced cognitive flexibility compared to their

monolingual counterparts (Bialystok and Craik 2010; Kovács and Mehler 2009a, b). We,

therefore, speculate that an enriched auditory experience (i.e., foreign language and music)

provides complex yet patterned auditory input; when delivered in a social setting, it allows

infants to develop enhanced cognitive abilities to switch between inputs and attune their

attentional resources to the relevant and important auditory information.

One specific mechanism by which infants can learn to effectively allocate attentional

resources is predictive coding. By extracting the temporal pattern of input, the dynamic

attending theory posits that attentional resources are allocated to time windows during

which the brains predict that important information will occur (e.g., musical beats, syl-

lables) (Jones and Boltz 1989). Investigators have demonstrated that infants as young as 3

months of age are able to extract temporal patterns and predict future stimuli based on the

extracted information (Basirat, Dehaene, and Dehaene-Lambertz 2014; Emberson,

Richards, and Aslin 2015). Our recent data using complex auditory stimuli suggest that a

music intervention focusing on temporal information learning may have increased infants’

ability to extract high-level temporal patterns and generate stronger predictions about

future stimuli—a skill that they can apply both in music and in speech processing. Future

research is warranted to, first, establish the relationships between different general cog-

nitive skills (e.g., inhibition, flexibly switching attention) and infants’ ability to discrim-

inate native and nonnative speech sounds. Then, it will be critical to directly test whether

short-term language or music experience, in comparison to no exposure, affects these

cognitive skills—which can, in turn, affect phonetic learning during the ‘‘sensitive period’’.

In the longer term, researchers should dissect and systematically examine the various

components of these enriched auditory experiences (e.g., social elements, multi-model

elements) in order to evaluate the effectiveness of each element and the interactions among

them. This will not only enhance our theoretical understanding of infant phonetic learning

but will also inform the design of early-education interventions, especially for infants at

risk for communication disorders.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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