Publications

121. Cai, Y., N.Y. Naser, J. Ma and F. Baneyx. 2024. Precision loading and delivery of molecular cargo by size-controlled coacervation of gold nanoparticles functionalized with elastin-like peptides. Biomacromolecules 25:2390-2398.

120. Cai, Y., X. Qi, J. Boese, Y. Zhao, B. Hellner, J. Chun, C.J. Mundy and F. Baneyx. 2024. Towards Predictive control of reversible nanoparticle assembly with solid-binding proteins. Soft Matter 20:1935-1942.

119. Torkelson, K., N.Y. Naser, X. Qi, Z. Li, W. Yang, K. Pushpavanam, C.L. Chen, F. Baneyx and J. Pfaendtner. 2024. Rational design of novel biomimetic sequence-defined polymers for mineralization applications. Chem. Mater. 36:786-794. [Cover story]

118. Ma, J., B. Jin, K.N. Guye, M.E. Chowdhury, C.L. Chen, J.J. De Yoreo and F. Baneyx. 2023. Controlling biomineralization with protein-functionalized peptoid nanotubes. Adv. Mater. 35:2207543.

117. Shao, L., J. Ma, J.L. Prelesnik, Y. Zhou, M. Nguyen, M. Zhao, S.A. Jenekhe, S.V. Kalinin, A.L. Ferguson, J. Pfaendtner, C.J. Mundy, J.J. De Yoreo, F. Baneyx and C.L. Chen. 2022. Hierarchical materials from high information content macromolecular building blocks: construction, dynamic interventions, and prediction. Chem. Rev. 122:17397-17478. [Invited review]

116. Lachowski, K., K. Vaddi, N.Y. Naser, F. Baneyx and L.D. Pozzo. 2022. Multivariate analysis of peptide-driven nucleation and growth of Au nanoparticles. Digital Discovery 1:427-439.

115. Jin, B., F. Yan, X. Qi, B. Cai, J. Tao, X. Fu, S. Tan, P. Zhang, J. Pfaendtner, N. Naser, F. Baneyx, J.J. De Yoreo and C.-L. Chen. 2022. Peptoid-directed formation of five-fold twinned Au nanostars through particle attachment and facet stabilization. Angew. Chem. Int. Ed. 134:e202201980

114. Qi, X., Y. Zhao, K. Lachowski, J. Boese, Y. Cai, O. Dollar, B. Hellner, L. Pozzo, J. Pfaendtner, J. Chun, F. Baneyx and C.J. Mundy. 2022. Predictive theoretical framework for dynamic control of bio-inspired hybrid nanoparticle self-assembly. ACS Nano 16:1919-1928.

113. Pushpavanam, K., B. Hellner and F. Baneyx. 2021. Interrogating biomineralization one amino acid at a time: Amplification of mutational effects in protein-aided titania morphogenesis through reaction diffusion control. Chem. Commun. 57:4803-4806.

112. Pushpavanam, K., J. Ma, Y. Cai, N.Y. Naser and F. Baneyx. 2021. Solid-binding proteins: Bridging synthesis, assembly and function in hybrid and hierarchical materials fabrication. Annu. Rev. Chem. Biomol. Eng. 12:333-357. [Invited review]

111. Ma, J., B. Cai, S. Zhang, T. Jian, J.J. De Yoreo, C.-L. Chen and F. Baneyx. 2021. Nanoparticle-mediated assembly of peptoid nanosheets functionalized with solid-binding proteins: Designing heterostructures for hierarchy. Nano Lett. 21:1636-1642.

110. Hellner, B., A.E. Stegmann, K. Pushpavanam, M.J. Bailey and F. Baneyx. 2020. Phase control of nanocrystalline inclusions in bioprecipitated titania with a panel of mutant silica-binding proteins. Langmuir 36:8503-8510.

109. Lim, M.B., X. Zhou, B. Hellner, A.S. Ganas, R.E. Gariepy, F. Baneyx, D.S. Wilbur and P.J. Pauzauskie. 2020. Crystalline loading of lipophilic coenzyme Q10 pharmaceuticals within conjugated carbon aerogel derivatives. Carbon 164:451-458.

108. Xu, M., M.J. Bailey, J. Look and F. Baneyx. 2020. Affinity purification of Car9-tagged proteins on silica-derivatized spin columns and 96-well plates. Protein Express Purif. 170:105608.

107. Hellner, B., S. Alamdari, H. Pyles, S. Zhang, A. Prakash, K.G. Sprenger, J.J. De Yoreo, D. Baker, J. Pfaendtner and F. Baneyx. 2020. Sequence-structure-binding relationships reveal adhesion behavior of the Car9 solid-binding peptide: an integrated experimental and simulation study. J. Am. Chem. Soc. 142:2355-2363.

106. Hellner, B., S.B. Lee, A. Subramanian, V.R. Subramanian and F. Baneyx. 2019. Modeling the cooperative adsorption of solid-binding protein on silica: molecular insights from SPR measurements. Langmuir 35:5013-5020.

105. Dunakey, S.J.G., B.L. Coyle, A. Thomas, B.J.F. Swift and F. Baneyx. 2019. Selective labeling and decoration of the ends and sidewalls of single-walled carbon nanotubes using mono- and bispecific solid binding fluorescent proteins. Bioconjug. Chem. 30:959-965.

104. Soto-Rodríguez, J., Z. Hemmatian, J. Black, M. Rolandi and F. Baneyx. 2019. Two-channel bioprotonic photodetector. ACS Appl. Bio Mater. 2:930-935.

103. Soto-Rodríguez, J. and F. Baneyx. 2019. Role of the signal sequence in proteorhodopsin biogenesis in E. coli. Biotechnol. Bioeng. 116:912-918.

102. Thomas, A., J.F. Matthaei and F. Baneyx. 2018. A self-assembling two-dimensional protein array is a versatile platform for the assembly of multicomponent nanostructures. Biotechnol. J. 13:e1800141 [Invited paper for Biomimetic and Bioinspired Biotechnology special issue]

101. Baneyx, F. 2018. Perfect union of proteins and gel creates hyperexpandable crystals. Nature 557:38-39. [Highlighted by Chemical & Engineering News, May 3, 2018]

100. Soto-Rodriguez, J., B.L. Coyle, A. Samuelson, K. Aravagiri and F. Baneyx. 2017. Affinity purification of Car9-tagged proteins on silica matrices: Optimization of a rapid and inexpensive protein purification technology. Protein Express. Purif. 135:70-77.

99. Swift, B.J.F., J. Shadish, C. DeForest and F. Baneyx. 2017. Streamlined synthesis and assembly of a hybrid sensing architecture with solid binding proteins and click chemistry. J. Am. Chem. Soc. 139:3958-3961.

98. Hemmatian, Z., S. Keene, E. Josberger, T. Miyake, C. Arboleda, J. Soto-Rodriguez, F. Baneyx and M. Rolandi. 2016. Electronic control of H+ current in a bioprotonic device with Gramicidin A and Alamethicin. Nat. Commun. 7:12981.

97. Yang, W., B. Hellner and F. Baneyx. 2016. Self-immobilization of Car9 fusion proteins within high surface area silica sol-gels and dynamic control of protein release. Bioconjug. Chem. 27:2450-59.

96. Soto-Rodriguez, J., Z. Hemmatian, E. Josberger, M. Rolandi and F. Baneyx. 2016. A palladium-binding deltarhodopsin for light-activated conversion of protonic to electronic currents. Adv. Mater. 28:6581-6585.

95. Coyle, B.L. and F. Baneyx. 2016. Direct and reversible immobilization and microcontact printing of functional proteins using a genetically appended silica-binding tag. Chem. Commun. 52:7001-7004. 

94. Liu, E.J., A. Sinclair, A.J. Keefe, B.L. Nannenga, B.L. Coyle, F. Baneyx and S. Jiang. 2015. EKylation: Addition of an alternating-charge peptide stabilizes proteins. Biomacromolecules 16:3357-3361. 

93. Matthaei, J.F., F. DiMaio, J. Richards, L.D. Pozzo, D. Baker and F. Baneyx. 2015. Designing two-dimensional protein arrays through fusion of multimers and interface mutations. Nano Lett. 15:5235-5239. [Cover story; Selected as emblem of the 2015 NSF Nanoscale Science & Engineering Grantees Conference]

92. Swift, B. and F. Baneyx. 2015. Microbial uptake, toxicity and fate of biofabricated ZnS:Mn nanocrystals. PLoS One. 10:e0124916.

91. Zhou, W., B. Swift and F. Baneyx. 2015. A minimized designer protein for facile fabrication of ZnS:Mn quantum dots. Chem. Commun. 51:3515-3517. [Cover story]

90. Coyle, B. L. and F. Baneyx. 2014. A cleavable silica-binding affinity tag for rapid and inexpensive protein purification. Biotechnol. Bioeng. 111:2019-2026. [Editorial spotlight]

89. Scoville, D.K., C.M. Schaupp, F. Baneyx and T.J. Kavanagh. 2014. In vivo approaches to assessing the toxicity of quantum dots. Methods Mol. Biol. 1199:179-190.

88. Zhou, W. and F. Baneyx. 2014. Biofabrication of ZnS:Mn luminescent nanocrystals using histidine, hexahistidine, and His-tagged proteins: a comparison study. Biochem. Eng. J. 89:28-32.

87. Zhou, W., A. Moguche, D. Chiu, K. Murali-Krishna and F. Baneyx. 2014. Just-in-time vaccines: Biomineralized calcium phosphate core-immunogen shell nanoparticles induce long-lasting CD8+ T cell responses in mice. Nanomedicine 10:571-578.

86. Baneyx, F. and J.F. Matthaei. 2014. Self-assembled two-dimensional protein arrays in bionanotechnology: From S-layers to designed lattices. Curr Opin Biotechnol. 28:39-45.

85. Coyle, B. L., M. Rolandi and F. Baneyx. 2013. Carbon-binding designer proteins that discriminate between sp2– and sp3-hybridized carbon surfaces. Langmuir 29:4839-4846.

84. Baneyx, F. and J.-K. Park. 2013. Editorial: Nanobio versus Bionano – what’s in a name? Biotechnol. J. 8:158-159.

83. Coyle, B. L., W. Zhou and F. Baneyx. 2013. Protein-aided mineralization of inorganic nanostructures. In Bionanotechnology: Biological self-assembly and its applications. Rehm, B. H. A. Ed. Horizon Scientific Press, pp 63-83.

82. Nannenga, B.L. and F. Baneyx. 2012. Folding engineering strategies for efficient membrane protein production in E. coli. Methods Mol. Biol. 899:187-202.

81. Kitayaporn, S., W. Zhou, D.T. Schwartz and F. Baneyx. 2012. Laying out ground rules for protein-aided nanofabrication: ZnO synthesis at 70oC as a case study. Biotechnol. Bioeng. 109:1912-1918.

80. Chiu, D., W. Zhou, S. Kitayaporn, D.T. Schwartz, K. Murali-Krishna, T.J. Kavanagh and F. Baneyx. 2012. Biomineralization and size control of stable calcium phosphate core-protein shell nanoparticles: potential for vaccine applications. Bioconjug. Chem. 23:610-617.

79. Sedlak, R.H., M. Hnilova, C. Grosh, H. Fong, F. Baneyx, D.T. Schwartz, M. Sarikaya, C. Tamerler and B. Traxler. 2012. An engineered Escherichia coli silver-binding periplasmic protein promotes silver tolerance. Appl. Environ. Microbiol. 78:2289-2296. [Cover story]

78. Baneyx, F. 2012. A ribosomal surprise. Biotechnol. J. 7:326-327.

77. Nannenga, B.L. and F. Baneyx. 2011. Enhanced expression of membrane proteins in E. coli with a PBAD promoter mutant: synergies with chaperone pathway engineering strategies. Microb. Cell Fact. 10:105.

76. Zhou, W. and F. Baneyx. 2011. Aqueous, protein-driven synthesis of transition metal-doped ZnS immuno-quantum dots. ACS Nano 5:8013-8018.                   

75. Nannenga, B.L. and F. Baneyx. 2011. Reprogramming chaperone pathways to improve membrane protein expression in Escherichia coli. Protein Sci. 20:1411-1420. [Editorial highlight]

74. Baneyx, F. 2011. Review of biomimetic and bioinspired nanomaterials. J. Am. Chem. Soc. 133:5161.

73. Baneyx, F. and B.L. Nannenga. 2010. A story of thrift unfolds. Nat. Chem. Biol. 6:880-881.

72. Puertas, J.M., B.L. Nannenga, K.T. Dornfeld, J.M. Betton and F. Baneyx. 2010. Enhancing the secretory yields of leech carboxypeptidase inhibitor in Escherichia coli: influence of trigger factor and signal recognition particle. Protein Express. Purif. 74:122-128.

71. Kitayaporn, S., J.H. Hoo, K. Böhringer, F. Baneyx and D.T. Schwartz. 2010. Orchestrated structure evolution: accelerating direct-write nanomanufacturing by combining top-down patterning with bottom-up growth. Nanotechnology 21:195306.

70. Zhou, W., D.T. Schwartz and F. Baneyx. 2010. Single-pot biofabrication of zinc sulfide immuno-quantum dots. J. Am. Chem. Soc. 132:4731-4738.

69. Grosh, C., D.T. Schwartz and F. Baneyx. 2009. Protein-based control of silver growth habit using electrochemical deposition. Cryst. Growth Des. 9:4401-4406.

68. Sastry, M.S.R., W. Zhou and F. Baneyx. 2009. Integrity of N- and C-termini is important for E. coli Hsp31 chaperone activity. Protein Sci. 18:1439-1447.

67. Allred, D.B., A. Cheng, M. Sarikaya, F. Baneyx and D.T. Schwartz. 2008. Three-dimensional architecture of inorganic nanoarrays electrodeposited through a surface-layer protein mask. Nano Lett. 8:1434-1438.

66. Sengupta, A., C.K. Thai, M.S.R. Sastry, J.F. Matthaei, D.T. Schwartz, E.J. Davis and F. Baneyx. 2008. A genetic approach for controlling the binding and orientation of proteins on nanoparticles. Langmuir 24:2000-2008.

65. Shapiro, E. and F. Baneyx. 2007. Stress-activated bioluminescent E. coli sensors for antimicrobial agents detection. J. Biotechnol. 132:487-493.

64. Choe, W.-S., M.S.R. Sastry, C.K. Thai, H. Dai, D.T. Schwartz and F. Baneyx. 2007. Conformational control of inorganic adhesion in a designer protein engineered for cuprous oxide binding. Langmuir. 23:11347-11350

63. Baneyx, F. and D.T. Schwartz. 2007. Selection and analysis of solid-binding peptides. Curr. Opin. Biotechnol. 18:312-317.

62. Allred, D.B., M. Sarikaya, F. Baneyx and D.T. Schwartz. 2007. Bacterial surface-layer proteins for electrochemical nanofabrication. Electrochim. Acta. 53:193-199.

61. Presenda, A., D.B. Allred, F. Baneyx, D.T. Schwartz and M. Sarikaya. 2007. Stability of S-layer proteins for electrochemical nanofabrication. Colloids Surf. B. 57:256-261.

60. Mujacic, M. and F. Baneyx. 2007. Chaperone Hsp31 contributes to acid resistance in stationary phase Escherichia coli. Appl. Environ. Microbiol. 73:1014-1018.

59. Allred, D.B., M.T. Zin, H. Ma, M. Sarikaya, F. Baneyx, A.K.-Y. Jen and D.T. Schwartz. 2007. Direct nanofabrication and TEM analysis on a suite of easy-to-prepare ultrathin film substrates. Thin Solid Films. 515:5341-5347.

58. Mujacic, M. and F. Baneyx. 2006. Regulation of Escherichia coli hchA, a stress-inducible gene encoding molecular chaperone Hsp31. Mol. Microbiol. 60:1576-1589.

57. Shapiro, E., C. Lu and F. Baneyx. 2005. A set of multicolored Photinus pyralis luciferase mutants for in vivo bioluminescence applications. Protein Eng. Des. Sel. 18:581-587. [Cover story]

56. Dai, H., W.-S. Choe, C.K. Thai, M. Sarikaya, B. Traxler, F. Baneyx and D.T. Schwartz. 2005. Nonequilibrium synthesis and assembly of hybrid inorganic-protein nanostructures using an engineered DNA-binding protein. J. Am. Chem. Soc. 127:15637-15643.

55. Chow, I.-T. and F. Baneyx. 2005. Coordinated synthesis of the two ClpB isoforms improves the ability of Escherichia coli to survive thermal stress. FEBS Lett. 579:4235-4241.

54. Chow, I.-T., M.E. Barnett, M. Zolkiewski and F. Baneyx. 2005. The N-terminal domain of Escherichia coli ClpB enhances chaperone function. FEBS Lett. 579:4242-4248.

53. Allred, D.B., M. Sarikaya, F. Baneyx and D.T. Schwartz. 2005. Electrochemical nanofabrication using crystalline protein masks. Nano Lett. 5:609-613. [Cover story; Cover art selected for commemorative poster of the 230th American Chemical Society Annual Meeting]

52. Baneyx, F. and M. Mujacic. 2004. Recombinant protein folding and misfolding in Escherichia coli.  Nat. Biotechnol. 22:1399-1408.

51. Thai, C.K., H. Dai, M.S.R. Sastry, M. Sarikaya, D.T. Schwartz and F. Baneyx. 2004. Identification and characterization of Cu2O and ZnO binding polypeptides by Escherichia coli cell surface display: towards an understanding of metal oxide binding. Biotechnol. Bioeng. 87:129-137.

50. Sastry, M.S.R., P. Quigley, W.G.J. Hol and F. Baneyx. 2004. The linker-loop region of E. coli chaperone Hsp31 functions as a thermal gate that modulates high affinity substrate binding at elevated temperatures. Proc. Natl. Acad. Sci. USA 101:8587-8592.

49. Baneyx, F. 2004. Keeping up with protein folding. Microb. Cell Fact. 3:6.

48. Sarikaya, M., C. Tamerler, D.T. Schwartz and F. Baneyx. 2004. Materials assembly and formation using engineered polypeptides. Annu. Rev. Mat. Res. 34:373-408.

47. Dai, H., C.K. Thai, M. Sarikaya, F. Baneyx and D. T. Schwartz. 2004. Through-mask anodic patterning of copper surfaces and film stability in biological media. Langmuir 20:3483-3486. [Cover story]

46. Mujacic, M., M. Bader and F. Baneyx. 2004. Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GrpE system in the management of protein misfolding under severe stress conditions. Mol. Microbiol. 51:849-859.

45. Mujacic, M. and F. Baneyx. 2004. Expression, folding and degradation in Escherichia coli. In Protein Expression Technologies: Current Status and Future Trends, Baneyx, F. Ed, Horizon Bioscience, Wymondham, United Kingdom, pp 85-148.

44. Quigley, P., K. Korotkov, F. Baneyx and W.G.J. Hol. 2004. A new native EcHsp31 structure suggests key role of structural flexibility for chaperone function. Protein Sci. 13:269-277.

43. Sarikaya, M., C. Tamerler, A.K.-Y. Jen, K. Schulten and F. Baneyx. 2003. Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2:577-585. [Cover story; Thomson ISI highly cited Fast Breaking Paper Dec. 2004]

42. Quigley, P., K. Korotkov, F. Baneyx and W.G.J. Hol. 2003. The 1.6 Å crystal structure of the class of chaperones represented by E. coli Hsp31 reveals a putative catalytic triad. Proc. Natl. Acad. Sci. USA 100:3137-3142.

41. Amatore, D. and F. Baneyx. 2003. Insertion mutagenesis of Escherichia coli GroEL. Biochem. Biophys. Res. Commun. 302:246-252.

40. Baneyx, F. and J.L Palumbo. 2003. Improving heterologous protein folding via molecular chaperone and foldase co-expression. Methods Mol. Biol. 205:171-197.

39. Baneyx, F. and M. Mujacic. 2003. Cold-inducible promoters for heterologous protein expression. Methods Mol. Biol. 205:1-18.

38. Sastry, M.S.R., K. Korotkov, Y. Brodsky and F. Baneyx. 2002. Hsp31, the Escherichia coli yedU gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperatures. J. Biol. Chem. 277:46026-46034.

37. Shapiro, E. and F. Baneyx. 2002. Stress-based identification and classification of antibacterial agents: second generation Escherichia coli reporter strains and optimization of detection. Antimicrob. Agents Chemother. 46:2490-2497.

36. Cooper, K.W. and F. Baneyx. 2001. Escherichia coli FtsH (HflB) degrades a membrane-associated TolAI-II-b-lactamase fusion protein under highly denaturing conditions. Protein Express. Purif. 21:323-332.

35. Thomas, J.G. and F. Baneyx. 2000. ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells. Mol. Microbiol. 36:1360-1370.

34. Bianchi, A.A. and F. Baneyx. 1999. Hyperosmotic shock induces the s32 and sE stress regulons of Escherichia coli. Mol. Microbiol. 34:1029-1038.

33. Bianchi, A.A. and F. Baneyx. 1999. Stress responses as a tool to detect and characterize the mechanism of action of antibacterial agents. Appl. Environ. Microbiol. 65:5023-5027. [Journal Highlight ASM News [2000] 66:28]

32. Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol.  10:411-421.

31. Mujacic, M., K.W. Cooper and F. Baneyx. 1999. Cold-inducible cloning vectors for low temperature protein expression in Escherichia coli: application to the production of a toxic and proteolytically sensitive fusion protein. Gene 238:325-332.

30.   Shearstone, J.R. and F. Baneyx. 1999.  Biochemical characterization of the small heat shock protein IbpB from Escherichia coli. J. Biol. Chem. 274:9937-9945.

29. Baneyx, F. 1999. In vivo folding of recombinant proteins in Escherichia coli. In Manual of Industrial Microbiology and Biotechnology, 2nd edition, Davies J.E., A.L. Demain, G. Cohen, C.L. Hershberger, L.J. Forney, I.B. Holland, W.-S. Hu, J.-H.D. Wu, D.H. Sherman, R.C. Wilson  Eds, ASM Press, Washington D.C., pp 551-565.

28. Wan, E.W.M. and F. Baneyx. 1998. TolAIII co-overexpression facilitates the recovery of periplasmic recombinant proteins into the growth medium of Escherichia coli. Protein Express. Purif. 14:13-22.

27. Thomas, J.G. and F. Baneyx. 1998. Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG in vivo. J. Bacteriol. 180:5165-5172.

26. Vasina, J.A., M.S. Peterson and F. Baneyx. 1998. Scale-up and optimization of the low-temperature-inducible cspA promoter system. Biotechnol. Prog. 14:714-721.

25. Thomas, J.G. and F. Baneyx. 1997. Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli. Protein Express. Purif. 11:289-296.

24. Thomas, J.G., A. Ayling and F. Baneyx. 1997. Molecular chaperones, folding catalysts and the recovery of biologically active recombinant proteins from E. coli: to fold or to refold. Appl. Biochem. Biotech. 66:197-238.

23. Schneider, E.L., J.G. Thomas, J.A. Bassuk, E.H. Sage and F. Baneyx. 1997. Manipulating the aggregation and oxidation of human SPARC in the cytoplasm of Escherichia coli. Nat. Biotechnol. 15:581-585.

22. Vasina, J.A. and F. Baneyx. 1997. Expression of aggregation-prone recombinant proteins at low temperatures: a comparative study of the E. coli cspA and tac promoter systems. Protein Express. Purif. 9:211-218.

21. Bassuk, J.A., L.P. Braun, K. Motamed, F. Baneyx and E.H. Sage. 1996. Renaturation of secreted protein acidic and rich in cysteine (SPARC) expressed in Escherichia coli requires isomerization of disulfide bonds for recovery of biological activity. Int. J. Biochem. Cell Biol. 28:1031-1043.

20. Thomas, J.G. and F. Baneyx. 1996. Protein folding in the cytoplasm of Escherichia coli: requirements for the DnaK-DnaJ-GrpE and GroEL-GroES molecular chaperone machines. Mol. Microbiol. 21:1185-1196.

19. Thomas, J.G. and F. Baneyx. 1996. Influence of a global deregulation of the heat-shock response on the expression of aggregation-prone proteins in Escherichia coli. Ann. New York Acad. Sci. 782:478-485.

18. Thomas, J.G. and F. Baneyx. 1996. Protein misfolding and inclusion body formation in Escherichia coli cells overexpressing heat shock proteins. J. Biol. Chem. 271:11141-11147.

17. Vasina, J.A. and F. Baneyx. 1996. Recombinant protein expression at low temperatures under the transcriptional control of the major E. coli cold shock promoter cspA. Appl. Environ. Microbiol. 62:1444-1447.

16. Ayling, A. and F. Baneyx. 1996. Influence of the GroE molecular chaperone machine on the in vitro refolding of Escherichia coli b-galactosidase. Protein Sci. 5:478-487.

15. Bassuk, J.A., F. Baneyx, R.B. Vernon, S.E. Funk and E.H. Sage. 1996. Expression of biologically active human SPARC in Escherichia coli. Arch. Biochem. Biophys. 325:8-19.

14. Baneyx, F., U. Bertsch, C.E. Kalbach, S.M. van der Vies, J. Soll and A.A. Gatenby. 1995. Spinach chloroplast cpn21 co-chaperonin possesses two functional domains fused together in a toroidal structure, and exhibits nucleotide-dependent binding to plastid chaperonin 60. J. Biol. Chem. 270:10695-10702.

13. Baneyx, F. 1994. Chaperonins and protein folding. Ann. New York Acad. Sci. 745:383-394.

12. Baneyx, F. and A.A. Gatenby. 1993. GroEL-mediated protein folding. In Protein Folding In Vivo and In Vitro. Cleland, J.L. Ed. ACS Press, Washington D.C., pp 133-141.

11. Gatenby, A.A., G.K. Donaldson, F. Baneyx, G.H. Lorimer, P.V. Viitanen and S.M. van der Vies. 1993. Participation of GroE heat shock proteins in polypeptide folding. In Biocatalyst Design for Stability and Specificity. Himmel, M.E. and Georgiou, G. Eds, ACS Press, Washington D.C., pp 140-150.

10. Baneyx, F. and G. Georgiou. 1992. Expression of proteolytically sensitive proteins in E. coli. In Stability of Protein Pharmaceuticals: Chemical and Physical Paths of Protein Degradation. Ahren, T.J. and Manning, M.C. Ed., Plenum Press, N.Y., pp 69-108.

9. Baneyx, F. and G. Georgiou. 1992. Degradation of secreted proteins in Escherichia coli. Ann. New York Acad. Sci. 665:301-308.

8. Baneyx, F. and A.A. Gatenby. 1992. A Mutation in GroEL interferes with protein folding by reducing the rate of discharge of sequestered polypeptides. J. Biol. Chem. 267:11637-11644.

7. Bowden, G.A., F. Baneyx and G. Georgiou. 1992. Abnormal fractionation of b-lactamase in Escherichia coli: evidence for an interaction with the inner membrane in the absence of a leader peptide. J. Bacteriol. 174:3407-3410.

6. Baneyx, F., A. Ayling, T. Palumbo, D. Thomas and G. Georgiou. 1991. Optimization of growth conditions for the production of proteolytically-sensitive proteins in the periplasmic space of Escherichia coli. Appl. Microbiol. Biotechnol. 36:14-20.

5. Baneyx, F. and G. Georgiou. 1991. Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high molecular weight substrates in vivo. J. Bacteriol. 173:2696-2703.

4. Georgiou, G. and F. Baneyx. 1990. Expression, purification and immobilization of a protein A-b-lactamase hybrid protein. Ann. New York Acad. Sci. 589:139-147.

3. Baneyx, F., C. Schmidt and G. Georgiou. 1990. Affinity immobilization of a genetically engineered bifunctional hybrid protein. Enzyme Microb. Technol. 12:337-342.

2. Baneyx, F. and G. Georgiou. 1990. In vivo degradation of secreted fusion proteins by the Escherichia coli outer membrane protease OmpT. J. Bacteriol. 172:491-494.

1. Baneyx, F. and G. Georgiou. 1989. Expression, purification and enzymatic characterization of a protein A-b-lactamase hybrid protein. Enzyme Microb. Technol. 11:559-567.