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1. Introduction

This special issue of Cognitive Systems Research pres-
ents a collection of remarkable papers on cognitive model-
ing based on communications delivered at ICCM-2006, the
Seventh International Conference on Cognitive Modeling
(Fum, Del Missier, & Stocco, 2006) held in Trieste, Italy,
from April 5th to 8th, 2006. Being the organizers and chair-
men of the conference, we have been invited to serve as
guest editors for this issue. We therefore solicited some par-
ticipants to reexamine their contributions, and to change
them in form of journal articles. In particular, we asked
authors to review what they had presented during the con-
ference focusing on the benefits cognitive modeling could
provide to cognitive science. The issue you are reading is
the result of this editorial process.

In this introductory commentary we would like to set
the stage for what follows by illustrating the advantages
and disadvantages of cognitive modeling, and by present-
ing a minimal set of requirements for a good modeling
practice. Then, we will briefly preview the papers compos-
ing this special issue, and we will emphasize how they deal
with the issues discussed in the previous sections.

2. The joys and sorrows of cognitive modeling

The aim of science, of every science, is to describe and
explain the events that occur in the world. If the descrip-
tions and explanations we come to are adequate, they will
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allow not only to understand the how and why of the old
things, but also to predict the happening of new ones.

Within cognitive science we are trying to uncover how
the mind works. Aiming toward this end, cognitive scien-
tists have been developing an impressive array of empirical
methods encompassing observational and correlational
studies, human and animal experimentation, case studies
of brain-damaged patients, physiological recordings and,
more recently, neuroimaging techniques. Here we are inter-
ested in using modeling to advance our knowledge of
cognition.

Modeling is used when we are investigating a system (or
phenomenon) that is too complex, too difficult, or, some-
times, simply impossible to deal with directly. In such
cases, we build a simpler and more abstract version of
the system—i.e., a model—that keeps its essential features
while omitting unnecessary details. If the model is a good
one, the results obtained by working and experimenting
with it could be applied to the original system. ‘‘Intuitively,
a model is an artifact that can be mapped on to a phenom-
enon that we are having difficulty understanding. By exam-
ining the model we can increase our understanding of what
we are modeling’’ (Dawson, 2004, p. 5).

A particularly useful class of models is represented by
computational models. A computational model is a model
that is implemented as a computer program. Differently
from statistical and mathematical models, which describe
a phenomenon but they do not reproduce it, computational
models behave, and they allow us to observe and measure
their behavior. ‘‘With the advent of powerful computers,
it has become possible to combine deductive and experi-
mental methods in a single computational approach. A
model of the object in question is created in the form of
a computer program, which is then actually run on the

mailto:fum@units.it


136 Editorial / Cognitive Systems Research 8 (2007) 135–142
computer, simulating behavior. In this way experiments
can be designed with the model, and the dynamic proper-
ties of the model can be examined through studying its
actual behavior.’’ (Goldberg, 2001, p. 45).

In cognitive modeling we build computational models of
cognitive processes. ‘‘The computer is given input and then
must perform internal operations to create a behavior. By
observing the behavior, the researcher can assess how well
it matches behavior produced by a real mind. [. . .] As such,
computer simulations provide a useful tool for testing the-
ories of cognition. Successes and failure of models give
valuable insights to a theory’s strengths and weaknesses’’
(Gazzaniga, Ivry, & Mangun, 2002, pp. 102–103).

Several authors (e.g., Dawson, 2004; Lehman, 1977;
Lewandowsky, 1993) have examined the advantages of
building computational models of cognition, and they gen-
erally agree about its benefits.

2.1. Clarity and completeness

An important benefit of articulating scientific general-
izations in form of computer programs is the increase in
the clarity of theoretical statements that is obtained. This
enhancement can assume different forms.

First, the statements composing a program cannot, by
definition, be vague or imprecise. To get a program run,
it is necessary to specify how the information is represented
and manipulated by it. All the steps must be clearly defined
and there is no room for cloudiness or ambiguity: all the
variables must be operationalized, the relationships
between them have to be fully specified, all the parameters
must be set.

A beneficial side effect of this clarification process is the
fact that it forces modelers to make their hidden assump-
tions fully explicit: ‘‘. . . [computational modeling] tech-
niques lead to precise statements of theory by forcing the
detailed specification of all aspects essential to the theory’s
implementation, including many aspects which might
otherwise be overlooked’’ (Cooper, Fox, Farringdon, &
Shallice, 1996, p. 4). Verbally expressed statements are
sometimes flawed by internal inconsistencies, logical con-
tradictions, theoretical weaknesses and gaps. A running
computational model, on the other hand, can be consid-
ered as a sufficiency proof of the internal coherence and
completeness of the ideas it is based upon.

2.2. Better exploration and evaluation

A strictly related benefit of expressing theories in a com-
putational form is the possibility to explore their conse-
quences in depth. With a theory expressed only in verbal
form we have to resort to logical inference to figure out
whether a certain proposition is entailed by it, and there
are known limits to the complexity of the inferences we
can perform. Computational models do not suffer from
these shortcomings. Running a model makes in fact the
ramifications of the theory explicit and allows a thorough
evaluation of it. Through computational modeling it is pos-
sible to tackle problems that do not allow closed-form
analysis, it is possible to include random and stochastic
components, it is possible to manage a huge number of
parameters and variables, and deal with complex forms
of dynamic interaction. Moreover, computational models
provide an ideal environment for experimentation. Once
a model is operating correctly it is relatively easy to run
experiments. ‘‘With modeling a new minitheory can often
be developed rather quickly, certainly much more quickly
than by the traditional approach of a series of experimental
studies to explore a new explanatory conception. The
model can serve as a kind of rough draft of the theory
allowing a quick preliminary check on many of the conse-
quences of a theory. If the model makes predictions that
are obviously incorrect, that difficulty can often be uncov-
ered in a less painful and time consuming fashion when
simulating’’ (Lehman, 1977, p.13). The model can therefore
be used to ask ‘‘what-if’’ questions, and to produce answers
that are compared with the results of real experiments
whose findings motivate more sophisticated models which
are used to produce still more interesting results, thus giv-
ing raise to a virtuous circle that will advance our
understanding.

2.3. Serendipity and emergence

The most relevant advantage of computational model-
ing derives, however, from the heuristic power that is asso-
ciated with it. This idea has been stated clearly by James
McClelland: ‘‘The key point here is that an explicit compu-
tational perspective often leads to new ways of understand-
ing observed phenomena that are apparently not always
accessible to those who seek to identify subsystems without
giving detailed consideration to the mechanisms involved’’
(McClelland, 2000, p. xxi). These new ways of understand-
ing may assume several forms. They can derive, for
instance, from the discovery of a single unifying principle
that will explain a set of hitherto seemingly unrelated facts.
They can lead to the emergence of complex, holistic forms
of behavior from the specification of simple local rules of
interaction. New ways of understanding can arise from
unexpected results that defy the modelers’ intuition. They
could be obtained by pushing the model beyond its limits
and by applying it to situations that it was not originally
intended to face.

Computational modeling presents, however, also some
disadvantages and side-effects, of which modelers should
be aware. Almost paradoxically, these disadvantages con-
stitute the complementary side of the benefits.

2.4. Irrelevant specification

While a running model guarantees the completeness of
the underlying formulation (if a program is incompletely
specified, it will simply refuse to run), it could engender
what Lewandowsky (1993) called the irrelevant specifica-
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tion problem, i.e., the fact that sometimes it is necessary to
make design decisions on issues that, while being theoreti-
cally irrelevant from the modeler’s point of view, could
have a significant impact on the model performance. In
many circumstances, these decisions are likely to involve
aspects of the problem the modeler is not interested in.
Because these choices are made only to be able to imple-
ment the model, they should be considered theoretically
neutral and fully interchangeable with any viable alterna-
tive: whatever decision is made, it should not have any
influence on the model’s results. This is however not always
the case, and the model behavior could be strongly affected
by ‘‘irrelevant’’ details such as the data structures being
used or the idiosyncratic features of the scheduler that
drives the simulation.

2.5. Accessibility and comprehensibility

A second problem constitutes the back side of the clarity
and precision obtained through computational modeling.
While a verbal formulation could be loose and underspec-
ified, it is also generally understandable without too much
effort by people having the sufficient background knowl-
edge. Computational models are more precise. If there exist
any doubts in the interpretation of a specific detail it is
always possible to look back at the code. Unfortunately,
while everybody is capable to follow a discussion stated
in verbal form, access to code requires specific competence
and skills that are not universally shared.

2.6. Bonini’s paradox

The possibility to test complex domains has its counter-
part in what is known as the Bonini’s paradox: ‘‘As a
model of a complex system becomes more complete, it
becomes less understandable. Alternatively, as a model
grows more realistic, it also becomes just as difficult to
understand as the real-world processes it represents’’ (Dut-
ton & Starbuck, 1971, p. 4). In other words, the risk we run
in developing intricate and elaborate models is that they
are no more understandable than the phenomena they
are intended to explain.

3. Hints for a good modeling practice

To take full advantage of the benefits and to limit the
shortcomings associated with computational modeling,
several pieces of advice have been put forward. Most of
these concern two critical points in the modeling endeav-
our, i.e., model validation and the choice among competing
models.

3.1. Model validation

One of the most important and most debated aspects of
cognitive modeling is validation, i.e., the problem of estab-
lishing how adequately the model reflects those aspects of
the real world it has been designed to model. Conceptually
the problem seems simple: if the results obtained by run-
ning the model match those obtained by running experi-
ments with human participants, the model is validated,
otherwise it should be rejected. Traditionally, several mea-
sures have been used to show that the model fits the data,
i.e., that the model parameters can be adjusted so that the
output of the model replicates the real results.

In the last years this practice has met several criticisms
which are summarized in a paper by Roberts and Pashler
(2000). Basically, three objections have been raised to
goodness of fit: (a) it is often unclear which specific predic-
tions the model makes, i.e., how much it constrains the
data to be fitted; (b) data variability is often not clearly
defined, i.e., it is not evident whether the data agree not
only with the model predictions but also with the outcomes
ruled out by the model; (c) the a priori likelihood that the
theory will fit—i.e., the likelihood that it will fit whether or
not it is true—is ignored. From these criticisms three pieces
of advice immediately follow, i.e. the modeler should: (a)
determine the model predictions by varying each free
parameter over its entire range (or by parameter space par-
titioning: Pitt, Kim, Navarro, & Myung, 2006), (b) report
the variability in the data, and (c) show that there are plau-
sible results the model cannot fit.

The Roberts and Pashler (2000) paper gave raise to a
lively debate. Schunn and Wallach (2005) argued that
exploring the fit of a model to data is an important goal
by itself and that obtaining a good fit is not a trivial
result. In the same vein, Stewart (2006) proposed a method-
ology to be used to address some of the issues that Roberts
and Pashler found to be problematic. By relying on all
these contributions, it is possible to draw some guidelines
for the model validation processes. We mention here only
the most important pieces of advice you can find in them:

1. Take both deviation and trend measures into account.
It is important that the evaluation of a model be based on
two different kinds of measures: those that quantify the
deviation of predicted data from the observed ones (e.g.,
MAD, RMSD, and RMSE) and those (like r2) that take
into account the trend relative magnitude.

2. Take the data variability into account. More than
producing values that are similar to the sample means, a
good model should produce ‘‘statistically equivalent data.
In other words, good models should produce data with
the same statistical distribution we find in the real world.’’
(Stewart, 2006, p. 818). In order to evaluate these distribu-
tions, Stewart suggests the use of the equivalence testing
procedure which assumes as the null hypothesis that the
difference between the means of the data being compared,
instead of the usual zero, is greater than some amount.

3. Avoid overfitting. We talk of overfitting when the
model is too good to be true, i.e., when it fits perfectly a
particular data set but does not generalize to new ones.
This happens when the model captures not only the general
aspects of a phenomenon but also the noise contained in
the data. Some statistical and machine-learning techniques
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(e.g., use of separate training and test sets, cross-validation,
bootstrapping, etc.) allow to appraise and avoid the overfit-
ting situations.

4. Apply relative, not absolute, standards of goodness of
fit. In some circumstances, it is easy to obtain unnatural
and excessive measure of goodness of fit that do not reflect
the real value of the model. For instance, if the data lie on a
straight line it is easy to obtain a perfect fit with a linear
model with only two free parameters. Thus, according to
Schunn and Wallach (2005), absolute standards should
not be applied in assessing the quality of a particular good-
ness of fit value. The fit of a model should be instead eval-
uated in comparison to those obtained by alternative
models, and in relation to the complexity of the data being
modeled.

5. Minimize the number of free parameters. With a suf-
ficient number of parameters any model may fit almost per-
fectly any data. To counteract this argument, Schunn and
Wallach (2005) proposed a number of potential solutions
such as: (a) the adoption of standard parameter values to
be used in all the modeling efforts, (b) giving semantic
meaning to the parameters, (c) discussing complex models
in terms of more abstract, and approximate, models that
have fewer free parameters and clearer predictions, and
(d) conducting sensitivity analyses to ascertain how much
the fit depends on the particular parameter values.

3.2. Model comparison and selection

Distinct from evaluating the validity and the goodness
of fit of a single cognitive model is the problem of compar-
ing several models to choose the one that best describes a
given set of results. Its apparent simplicity notwithstand-
ing, this problem, the so-called identification problem, is
simply unsolvable. This point was put forward more than
30 years ago by John R. Anderson. ‘‘Unique identification
of mental structures and processes was once my goal and it
seems that it is also the goal of other cognitive psycholo-
gists. However, I have since come to realize that unique
identification is not possible. There undoubtedly exists a
very diverse set of models, but all equivalent in that they
predict the behavior of humans at cognitive tasks.’’
(Anderson, 1976, p. 4). Anderson’s argument is based on
the fact that, because there are problems of uniqueness in
the formal automata subspace—where for any well speci-
fied behavior there exist many different automata which
can reproduce it—there will be even greater problems in
the full space of cognitive theories which, even it is not well
specified, can presumably include all the types of machines
that are studied in the formal automata theory.

Given the fact that there are many different models
capable of explaining and reproducing the same behavioral
data and that, therefore, asking which is the ‘‘true’’ one is
futile, the question of the criteria that should be adopted to
choose among competing models becomes critical. Having
banned the truth criterion, the theoretical and practical
utility seems the most agreed-upon one. ‘‘A very important
point is that in this particular kind of work, the postulates
built into a model need not represent the beliefs of the
modeler; rather, they may represent a particular set of
choices the modeler has made to try to gain insight into
the model and, by proxy, the associated behavioral [. . .]
phenomenon’’ (McClelland, 2000, p. xxii).

Anderson (1976) breaks down the utility criterion into
four subcriteria: (a) parsimony, which provides both a rela-
tive and an absolute standard for comparing models; (b)
effectiveness, which refers to the fact that there should be
explicit procedures for deriving prediction from the model;
(c) broad generality, and, obviously, (d) accuracy. Follow-
ing his suggestions, we can articulate some additional rec-
ommendations for the modeling practice.

6. Prefer models which are based on general cognitive
theories. This means that, in choosing between a model
providing a specific explanation for results obtained with
a constrained research paradigm and one deriving from a
theoretical view addressing a broad range of phenomena,
we should prefer the latter. This is the idea underlying
the architectural approach to modeling, inspired by the
seminal paper of Newell (1973). Cognitive architectures
‘‘are task-general theories of the structure and function of
the complete cognitive system. They are general theories
of how perceptual, cognitive and motor processes interact
in producing behavior, rather than specific theories of
behavior on a single task (e.g., the Stroop task) or behavior
in a single functional domain (e.g., working memory)’’
(Cooper, 2006, p. 200). It should be noted that developing
a model within an existing architecture also helps to reduce
the impact of the irrelevant specification: model features
that need to be specified but are not immediately related
to the task are usually provided by the architecture, and
have undergone independent verification. Relying on cog-
nitive architectures, moreover, contributes to reducing the
number of free parameters of a model and seriously bounds
the dangerous practice of ad hoc theorization. The archi-
tectural approach has gained consensus in the cognitive
modeling community. Several architectures such as ACT-
R (Anderson et al., 2004; Anderson & Lebiere, 1998), Soar
(Newell, 1990), 4-CAPS (Just, Carpenter, & Varma, 1999),
EPIC (Meyer & Kieras, 1997) and Clarion (Sun, 2002)
have been developed in the last two decades and models
based on them are used to address specific tasks within a
unified theoretical framework.

7. Prefer simple models. As we saw in the previous sec-
tion, an arbitrarily complex model can fit almost every-
thing. A feature to be taken into account in evaluating
models is therefore their complexity (Myung, 2000). To this
end, several criteria (e.g., Minimum Description Length,
Akaike information criterion, Bayesian information crite-
rion) have been proposed that assess the goodness of fit
values in relation to the model complexity.

8. Prefer interesting and counterintuitive models. Under
the assumption that ‘‘. . . if a model doesn’t have any sur-
prises, then it may not be a very good model’’ (Dawson,
2004, p. 24) we should prefer models that provide a novel
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and original contribution to our understanding and that do
not simply repeat and refine what is already known.

9. Prefer precise and easily falsifiable models. Scientific
models should be falsifiable (Bamber & van Santen,
2000). The more precise the predictions made by a model,
the easier is to falsify it. Bold, sharp and risky predictions
are virtues for a model.

10. Prefer integrated models, i.e., models that take into
account, or are possibly inspired or compatible with, differ-
ent data and different knowledge. Researchers may divide
on the level they prefer to see and explain human behavior,
but a good model should in principle be compatible with all
of them.

4. The papers in this issue

The papers contained in this issue represent an interest-
ing array of the results that could be obtained by following
a good modeling methodology.

The paper by Grecucci, Cooper, and Rumiati is an exam-
ple of a strain of connectionist models (e.g., O’Reilly &
Munakata, 2000; Rolls & Treves, 1998) which devote
increasing attention to the biology and physiology of the
systems they try to reproduce. Building upon a notable
example of integrated framework within the connectionist
approach (i.e., Leabra: O’Reilly & Munakata, 2000), Gre-
cucci et al. model the impact of emotion in the execution of
motor actions which are either identical to or different from
the perceived ones. It has been pointed out in the previous
section that the complexity of computational models often
obscures their real value in fitting experimental data. This,
in turn, prevents a real understanding of the proposed
explanation and a deeper examination of the models them-
selves. Taking seriously these issues, Grecucci et al. have
been extremely careful in their approach. Being their model
inherently complex, the authors choose to explicitly lay
down each of its individual underlying assumptions, and
to justify them on the basis of previous research and neuro-
psychological findings. Consistently, they did not simply
report how well the model reproduces human data, but
tested independently each of the assumptions, thus provid-
ing the reader with a deeper insight of the empirical find-
ings and of how well the model captures them. Finally,
they successfully enriched their model with an additional
layer representing the dorsolateral prefrontal cortex pro-
viding important cues on how the model can be broadened
and how it can be interfaced with other aspects of
cognition.

The paper by Chuderski, Stettner and Orzechowski con-
stitutes an important example of how psychological theory
and computational modeling can be fruitfully integrated.
Starting from the need to provide a convincing explanation
for a complex (and puzzling) set of results in a classical
short-term memory paradigm—Sternberg (1969) task—
Chuderski et al. developed a model that is partly grounded
on the ACT-R (Anderson et al., 2004; Anderson & Lebiere,
1998) cognitive architecture. However, their model com-
bines basic assumptions drawn from this theory with a
detailed account of search processes. The model assumes
that search is initially targeted to elements under the focus
of attention. If this first stage of search fails, then partici-
pants may try to retrieve items from declarative memory.
This model is able to offer a good account for a complex
pattern of experimental results (latency and accuracy data).
Moreover, the model is able to capture individual differ-
ences in search modes through the variation of a single,
theoretically grounded, parameter which controls the
extent of the focus of attention.

This paper is an example of how a single model can offer
an explanation for a complex pattern of data. As we have
previously stated, the capacity to provide a unitary explan-
atory framework for an apparently disparate constellation
of phenomena represents one of the most valuable advan-
tages of cognitive modeling based on cognitive architec-
tures. It is noteworthy that also the analysis of individual
differences assumes a significant role in Chuderski et al.’s
work. This paper shows how it is possible to seamlessly
integrate the analysis of individual differences in cognitive
models, thus increasing their explanatory capacity.

Chuderski et al. followed a number of good methodo-
logical practices. First, extensive psychological justification
for the model assumptions is provided. This practice is
unfortunately not very common in cognitive modeling,
despite the fact that only a convincing psychological/neural
justification of the model assumptions may support its
plausibility. Next, the model is fitted to a complex pattern
of data, thus creating the conditions for its potential falsi-
fication. Finally, the authors suggest other research prob-
lems and situations in which the predictions of the model
can be tested. As we previously reminded, the capacity to
formulate novel and counter-intuitive predictions is a crit-
ical dimension to be considered in the evaluation of mod-
els. Cognitive modeling can help the researchers to figure
out novel predictions, given that it is relatively easy to
explore how a model would face a novel situation and
to generate predictions on that situation before starting
to collect behavioral data.

The paper by van Maanen and van Rijn exemplifies the
tendency towards integration in yet another way. These
authors investigated a widely known and extensively
researched experimental task (the picture-word interference
paradigm) and modeled participants’ behavior within the
ACT-R integrated cognitive architecture. The architecture
provided them with background constraints on how the
task could be performed and participants’ behavior be
reproduced. Then, they argued for an extension of the
architecture itself by examining the time course of interfer-
ence, where the experimental results suggest the existence
of effects that lie beyond the scope of ACT-R’s retrieval
mechanism. The extension is a modified, non-ballistic
retrieval algorithm, which is again informed by a connec-
tionist model of recent generation (in this case, the leaky
accumulator model by Usher & McClelland, 2001), and
is capable of explaining interference effects occurring in
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the small interval between the initiation and the completion
of retrieval. To accomplish this, the authors successfully
abstracted the algorithm to a level where it can be smoothly
integrated within an existent framework for more complex
behaviors.

The paper by Tamborello and Byrne shows another fruit-
ful way to exploit cognitive architectures and their embed-
ded constraints to increase the explanatory power of
cognitive modeling. The authors investigated a visual
search of menu displays, a well-studied paradigm in the
field of Human Computer Interaction. Human behavior
is sensitive to the statistical structure of the task and, in
particular, to the degree to which highlighted items in a dis-
play correspond to the information sought for. An existing
successful algebraic model of visual search (Fisher & Tan,
1989) already existed, but it failed to capture the ongoing
learning process which eventually shapes the search behav-
ior. Tamborello and Byrne adopted ACT-R to provide a
reliable background against which alternative leaning strat-
egies could be tested, and they put forward convincing evi-
dence about the (micro) level at which learning occurs and
how it shapes behavior. The use of an architecture is dou-
bly useful in clamping down behavioral constraints and in
providing an integrated statistical learning algorithm for
human behavior.

Both the contributions by van Maanen and van Rijn
and of Tamborello and Byrne nicely exemplify two trends
in current computational modeling of cognitive processes.
The first is the careful attention paid to alternative strate-
gies and their relevance also in simple, and apparently irre-
ducible, tasks. Even in the Stroop task, for instance,
competing strategies may be used to capture and reproduce
the interference and facilitation effects (Lovett, 2005) and
are compatible with the existence of individual differences
in performance (e.g., Long & Prat, 2002). The second is
the awareness that even simple experimental paradigms
are affected by factors which lie beyond the domain of
investigation and often are inconspicuous to the modeler.
In the case of van Maanen and van Rijn, it is the interfer-
ence occurring after retrieval from declarative memory has
been initiated. In the case of Tamborello and Byrne, it is
the underlying procedural learning and how it exactly
shapes the visual search strategy.

The paper by Kong and Schunn shows how cognitive
modeling can be used to explain human behavior in a com-
plex problem solving task. In their model of the traveling
salesman problem (TSP), Kong and Schunn explore how
well their hypothesis about the integration of global and
local visuo-spatial information processing is supported by
the data. In its willingness to tackle complex phenomena,
this paper on the TSP reminds the spirit of the prestigious
tradition of computational theories of problem solving,
which traces back to Newell and Simon (1972).

The first general lesson we can learn from the paper by
Kong and Schunn is that cognitive models are unique tools
for understanding whether our theories of complex phe-
nomena can stand the reality test (i.e., successfully predict
experimental data). In fact, as we have previously pointed
out, cognitive modeling allows drawing precise predictions
from complex theories, even in situations that cannot be
handled by mathematical models. Kong and Schunn inves-
tigated the TSP and showed that their model, based on a
limited number of clearly stated assumptions, represents
a plausible explanation of participants’ behavior. Addition-
ally, this paper proves that cognitive modeling is not lim-
ited to verbal tasks, but can be also profitably applied to
visuo-spatial cognition.

From the methodological viewpoint, two important
aspects can be underlined. First, the paper by Kong and
Schunn exemplifies how precise and detailed the descrip-
tion of a model should be. Second, this paper applies a core
methodological guideline in modeling: i.e., comparing
alternative accounts in their capacity to fit the data. Kong
and Schunn contrasted their model and four alternative
explanations of human performance in the TSP. Competi-
tive modeling is useful because it forces the researchers to
be clear about differences between theories. Moreover, in
order to set the ground for critical tests and falsification,
it leads the researchers to be explicit about what each the-
ory does and does not predict.

The paper by Dzaack, Trösterer, Pape and Urbas applies
cognitive modeling to time estimation. Dzaak et al. pro-
pose a model of retrospective time estimation that can be
integrated as a module in the ACT-R architecture. Then,
they evaluate the model capacity to fit the data on retro-
spective estimation of trials composed by D2-Drive task
performance and idle periods.

This work shows how cognitive modeling requires a
detailed specification of the processes involved in a task
(unlike verbal theories, generic neural theories, and box-
and-arrows accounts). Additionally, it is an example of
incremental modeling. Incremental construction of theo-
ries, from the methodological point of view, reduces signif-
icantly the number of assumptions and free parameters
that are used to explain the data.

Finally, it is worth underlining that the model presented
by Dzaac et al. deals with time estimation processes, which
do play a major role in real-word contexts. Well-supported
and plausible models of retrospective and prospective time
estimation can be very useful in applied research settings
and in the real world. In fact, they allow predicting and
simulating human performance in a variety of important
contexts (e.g., reactions to waiting times in Human Com-
puter Interaction/Human Machine Interaction or for ser-
vices, behavior in queues, time estimation while driving
or piloting). This reminds us that cognitive modeling can
be used also as a prescriptive device, supporting prototyp-
ing and design of technological artifacts and displays, but
also complementing more traditional types of environmen-
tal, economic, and social planning.

The paper by Baughman and Cooper proposes a simple
and elegant explanation of the differences in performance
between two groups of children (3–4 vs. 5–6 years old)
working on the Tower of London task where younger
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children show a tendency to break more task rules and to
produce more incomplete solutions. The authors claim that
this tendency could be explained in terms of the develop-
ment of the executive functions, more precisely by postulat-
ing a stronger role of inhibition in the older group.

The authors developed two computational models,
implemented in the Cogent modeling environment (Coo-
per, 2002) that simulate two different solution strategies
employed by the groups. The models are based on the the-
ory of control of cognitive processed developed by Norman
and Shallice (1986). Being expressed only verbally, the the-
ory was not sufficiently specified to allow the construction
of a fully mechanistic account of the problem solving pro-
cesses. Its implementation in the Cogent environment,
however, allowed the authors to derive precise predictions
that match the behavior of the two groups. By basing their
models on a sound theory, the authors were able to show
the emergent nature of control that arises from the interac-
tion of the two structures hypothesized by the theory, i.e.,
the contention scheduling and the supervisory attentional
system, offering thus a bridge between the traditional
approaches to problem solving and the accounts based
on theories of executive functions and data from the
neurosciences.

One of the questions modelers often ask themselves is
how the performance of their model changes when some
of its features are changed. This generally means to adjust
the numerical parameters of the model. Another interest-
ing, but less studied, aspect is that of establishing how
the results vary if we modify some of structural aspects
of the model.

The paper by Stewart and West deals with this issue by
providing en environment which facilitates the exploration
of the space of the possible models based on ACT-R. Rely-
ing only on the theoretical description of the architecture
and not on the standard implementation, the authors
rebuilt a version of ACT-R in Python, a clean program-
ming language which is robust, easy to maintain, and effec-
tive as a rapid prototyping tool. The new system, Python-
ACR emphasizes a clear separation between the theoretical
and implementational part of ACT-R, solving at least par-
tially the irrelevant implementation problem.

An interesting side effect of this effort is that, during the
reimplementation phase, the authors developed a new
vision of how the architecture could be used. ACT-R is
normally considered as comprising a set of separate mod-
ules, a set of buffers used for communication, and the tra-
ditional components of declarative memory (with its
chunks) and procedural memory (with its productions).
These last elements could be used, according to Stewart
and West, to describe a ‘‘generic’’ module instead of being
limited to define the different kinds of knowledge held in
memory. In other words, it should be possible, in principle,
to describe other modules each having its own declarative
and procedural subpart.

Building a Python ACT-R model could thus consist in
defining the production systems (please, note the plural),
the associative learning systems (as before), the buffers
and the connections between these systems. The different
models created in this way can then be compared, just as
models with different numerical parameters settings are
compared in most other cognitive modeling research.

The paper by Kennedy and Trafton deals with a problem
that is rarely addressed in the cognitive modeling commu-
nity, i.e., exploring an important phenomenon or an inter-
esting task by using different architectures. Because a
model combines general architectural constraints with
domain-specific knowledge, the failure of the model to rep-
licate empirical data is generally attributed to the latter and
not to the former. There is a widespread belief that cogni-
tive architectures should be viewed not as theories subject
to Popperian falsification, but rather as Lakatosian
research programs based on cumulative growth (for an
insightful discussion of this issue—raised by Newell,
1990—see: Cooper, 2006).

Kennedy and Trafton investigated the characteristics of
long-term symbolic learning in Soar and ACT-R by run-
ning cognitive models of simple tasks in the blocks world
domain. They examined whether symbolic learning contin-
ues indefinitely, how the learned knowledge is used, and
whether computational performance degrades over the
long term.

As far as the first question is concerned, it was found
that in finite domains symbolic learning eventually stops
in both Soar and ACT-R, a finding that, according to the
authors, suggests that learning will stop in humans, too.
The two architectures differ, on the other hand, in the use
of learned knowledge, with Soar that makes immediately
available the new acquired procedures and ACT-R that
requires many learning episodes before a new production
would be usable. Finally, both architectures suffer from
computational performance problems with long term
learning.

Kennedy and Trafton’s work is thus an interesting
example of how it is possible to compare and contrast dif-
ferent architectures to advance our knowledge of
cognition.

To summarize, we think that the papers composing this
issue constitute a significant case for cognitive modeling
and a clear illustration of the advantages modeling could
provide to cognitive science. We hope you will enjoy read-
ing them and, possibly, get inspiration for your own work.
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