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The basal ganglia play a central role in cognition and are involved in such general functions as action
selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal
ganglia implement a conditional information-routing system. The system directs the transmission of
cortical signals between pairs of regions by manipulating separately the selection of sources and
destinations of information transfers. We suggest that such a mechanism provides an account for several
cognitive functions of the basal ganglia. The model also incorporates a possible mechanism by which
subsequent transfers of information control the release of dopamine. This signal is used to produce
novel stimulus–response associations by internalizing transferred cortical representations in the
striatum. We discuss how the model is related to production systems and cognitive architectures. A
series of simulations is presented to illustrate how the model can perform simple stimulus–response
tasks, develop automatic behaviors, and provide an account of impairments in Parkinson’s and
Huntington’s diseases.
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This article puts forward a hypothesis on how the transfer of
information among cortical regions is organized. According to this
hypothesis, the transfer of information in the brain is primarily
directed by the basal ganglia. We present a computational model
that has a series of advantages over previous models, including a
solution to the information-routing problem that directly maps
onto brain physiology.

The organization of information transfer is important for many
reasons. First, it is a common problem that every complex model
of the brain must ultimately resolve. Improved understanding of
individual neural circuits has spawned a number of ambitious
attempts to model the basic workings of the brain (Arbib, 2003;
Granger, 2006; Hawkins & Blakeslee, 2004; Houk, 2005). Al-
though these attempts differ from each other, they all face the
problem of how to control the transfer of information from one
processing site to another. This issue is particularly crucial for
achieving information integration, because it enables special-

ized processing circuits to access their proper inputs. It is also
ultimately decisive in defining cognitive control, because de-
ciding where individual representations are delivered shapes
how behavior will be carried out and which actions will be
taken.

In the field of cognitive science, cognitive architectures are
probably the most ambitious examples of general-purpose, in-
tegrated cognitive models, aimed at providing a set of primitive
functions upon which cognitive behaviors can be built (Ander-
son, 1983; Newell, 1973). Different architectures have been
proposed over the years (Anderson, 1983; Just & Carpenter,
1992; Meyer & Kieras, 1997a, 1997b; Newell, 1990). In a few
cases (Anderson, 2007; Anderson, Fincham, Qin, & Stocco,
2008) specific mappings between computational components
and brain regions have been developed, giving the architecture
a biological substrate and shedding light on the large-scale
design of the brain. These modeling attempts solve the problem
of how information is transferred in different ways. For in-
stance, Just and Varma (2007) hypothesized that a number of
cortical processors exist and share information dynamically
with each other. In contrast, Anderson (1983, 2007) and Meyer
and Kieras (1997a, 1997b) proposed that information can only
pass through a central system.

This article is organized into four sections. The first section
provides a brief overview of the basal ganglia, their functional
anatomy, their contributions to cognition, and previous modeling
attempts of their function. The second section introduces our
conditional routing model of the basal ganglia, its functions, and
its capabilities. The third section discusses how learning occurs in
the model and how these computations are related to a number of
cognitive functions like skill acquisition and reward learning.
Finally, implications and alternative accounts of basal ganglia
function are discussed.
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Anatomy of the Basal Ganglia

The basal ganglia (see Figure 1) are a set of subcortical nuclei
located in the midbrain, around the thalamus. The major nuclei of the
basal ganglia are the striatum, which is composed of the caudate
nucleus and the putamen; the internal and external parts of the globus
pallidus (henceforth GPi and GPe, respectively); the pars reticulata
and the pars compacta of the substantia nigra (SNr and SNc, respec-
tively); and the subthalamic nucleus (STN; Chesselet & Delfs, 1996).
Figure 1 illustrates their reciprocal connections.

The striatum is the entry point of the circuit (Albin, Young, &
Penney, 1989; Chesselet & Delfs, 1996). Virtually all the cortical
mantle projects to the striatum (Carman, Cowan, & Powell, 1963;
Kemp & Powell, 1970); these projections reflect cortical topogra-
phy (Albin et al., 1989; Bolam, Hanley, Booth, & Bevan, 2000;
Kemp & Powell, 1970). Other projections to the striatum come
from the STN (e.g., Parent & Hazrati, 1995), the ventral tegmental
area, and the SNc (e.g., Haber, 2003).

On the other end of the circuit are the SNr and GPi, which
constitute the output nuclei of the ganglia. Despite being physi-
cally separated by white matter, they are made of similar cells and
are often considered as a single entity (Albin et al., 1989; Bolam
et al., 2000). This article also considers them a unit and refers to
them as the output nuclei or SNr/GPi. The main target of these
output nuclei, and therefore of the entire circuit, are the ventral
anterior, ventral lateral, and the medial dorsal nuclei of the thala-
mus (Bolam et al., 2000; McFarland & Haber, 2002; A. D. Smith
& Bolam, 1990). Most of the known projections originating in the
thalamic relay nuclei target the frontal lobe (e.g., Hoover & Strick,
1993; Middleton & Strick, 1994). Smaller projections to temporal
(Middleton & Strick, 1996) and parietal areas (Clower, Dum, &
Strick, 2005), however, have been described. In addition, the
output nuclei also project to the superior colliculus, the reticular

formation, and the pedunculopontine nucleus (Gerfen, Staines,
Arbuthnott, & Fibiger, 1982), three subcortical structures that play
a substantial role in modulating behavior (Bolam et al., 2000).

Projections to the striatum are organized topologically (Alex-
ander, DeLong, & Strick, 1986; Kemp & Powell, 1970), with
afferents from different cortical areas mainly targeting separate
areas of the striatum. Thalamo–cortical projections are also orga-
nized topologically, with projections to different parts of the cortex
originating in specific parts of the thalamus and the output nuclei
of the basal ganglia (Middleton & Strick, 2000). This topological
organization has initially been thought to reflect the existence of
separate parallel circuits (Alexander et al., 1986; Hoover & Strick,
1993). The separation between the circuits has been questioned,
and there seem to exist various places of the circuit where multiple
inputs from different areas converge (Haber, 2003). Also, experi-
mental evidence suggests that cortical projections, besides target-
ing their correspondent striatal region, innervate to other parts of
the striatum (Parthasarathy, Schall, & Graybiel, 1992).

Most of the projections between the various nuclei of the basal
ganglia are inhibitory (see Figure 1). In fact, all the projection
neurons in the striatum, in the output nuclei, and in the GPe are
GABAergic (Albin et al., 1989; Bolam et al., 2000; A. D. Smith &
Bolam, 1990). The output nuclei have elevated tonic activity;
therefore, under resting conditions, the net output to the thalamus
is inhibitory. The basal ganglia circuit works by modulating this
inhibition (Chevalier & Deniau, 1990; DeLong, 1990).

Major Pathways Within the Circuit

There are two main routes that connect the striatum to the output
nuclei. One is the direct pathway, made of inhibitory projections
from the striatum to the SNr/GPi. The other is the indirect pathway
that proceeds through the GPe and STN (Albin et al., 1989;
DeLong, 1990; Penney & Young, 1986). These two pathways have
opposite effects on thalamic activity: Whereas the direct pathway
disinhibits thalamic activity by inhibiting the output nuclei, the
indirect pathway inhibits the thalamic output by exciting the output
nuclei (Albin et al., 1989; DeLong, 1990).

A third pathway exists that proceeds directly from the cortex to
the STN and from there to the output nuclei. This route is known
as the hyperdirect pathway (Rouzaire-Dubois & Scarnati, 1987).
The importance of this pathway has recently gained prominence.
The large number of cortical afferents makes the STN a second
input nucleus of the circuit, after the striatum (Mink & Thach,
1993). In addition, cortical signals traveling along the hyperdirect
pathway reach the output nuclei faster than do those traveling on
either the direct or indirect routes (Nambu et al., 2000). On the
basis of these and other findings, Nambu, Tokuno, and Takada
(2002) have proposed that the hyperdirect pathway performs a
preliminary diffuse inhibition of motor programs, enhancing and
sharpening the disinhibitory signals from the direct pathway.

Besides these major routes, a number of smaller descending
pathways within the circuit have been identified. For instance, GPe
neurons also project directly to the output nuclei (Bevan, Booth,
Eaton, & Bolam, 1998; Bolam et al., 2000; see Figure 1).

In addition to pathways that proceed “forward” along the cortex-
to-thalamus direction, the circuit includes a number of other path-
ways that proceed “backward” and may serve feedback and control
functions (Bolam et al., 2000; Redgrave, Prescott, & Gurney,

Figure 1. A simplified representation of the basal ganglia circuit and its
connectivity (adapted with modifications from Graybiel, 2000, and Bolam
et al., 2000). Excitatory projections are marked with a “�”; inhibitory
projections with a “–.” Glutamatergic neurons and projections are repre-
sented in medium gray; GABAergic, in dark gray; dopaminergic, in light
gray. SP � striatopallidal projection neuron; SN � striatonigral projection
neuron; IN � striatal interneuron; Da � dopaminergic neuron.
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1999). These include projections from the thalamus to the striatum
(Y. Smith, Raju, Pare, & Sidibe, 2004); from the STN to the GPe
(Shink, Bevan, Bolam, & Smith, 1996); and from the GPe back to
the striatum (Bevan et al., 1998). Of particular importance is the
nigrostriatal pathway that connects the SNc to the striatum, which
is formed by the axons of dopaminergic cells in the SNc (Haber,
2003; Hajos & Greenfield, 1994). Dopamine plays an important
regulatory role on striatal neurons (Joel & Weiner, 2000; Schultz,
1998, 2002) and plays a central role in our model as well.

Microcircuitry of the Striatum

The striatum is the largest nucleus of the circuit. To understand
its functionality, its internal architecture is as important as its
connections with the remaining nuclei. Therefore, this section
presents a succinct overview of striatal microcircuitry, which is
visually summarized in Figure 2.

Projection Neurons in the Striatum

Most of the striatum is composed of projections neurons. Pro-
jection neurons are medium spiny neurons; they account for up to
96% of the striatal cells in rodents (Rymar, Sasseville, Luk, &
Sadikot, 2004; Yelnik, Francois, Percheron, & Tande, 1991) and
up to 77% in primates (Graveland, Williams, & DiFiglia, 1985).
As previously noted, all projection neurons are GABAergic and,
therefore, inhibitory (Gerfen, 1992; Kita & Kitai, 1988). They are
the main targets of cortical projections, and their axons originate
the direct and indirect pathways of the basal ganglia (Tepper &

Bolam, 2004). Projection neurons also make extensive inhibitory
connections with each other (Somogyi, Bolam, & Smith, 1981;
Wilson & Groves, 1980); the strength and importance of their
reciprocal inhibitory connections, however, have been demoted
over time (Jaeger, Kita, & Wilson, 1994; Koos, Tepper, & Wilson,
2004; Plenz, 2003; Tunstall, Oorschot, Kean, & Wickens, 2002).

Projection neurons divide into two subpopulations: striatonigral
(SN) neurons projecting to the SNr/GPi and originating the direct
pathway and striatopallidal (SP) neurons projecting to the GPe
and originating the indirect pathway (Bolam et al., 2000; Kawagu-
chi, 1997). These two populations of neurons have different chem-
ical and physiological properties. Most importantly, they express
different types of dopamine receptors (e.g., Gerfen et al., 1990;
Tepper & Bolam, 2004). As a result, dopamine has opposite effects
on them: It excites SN neurons but inhibits SP neurons.

Within projection neurons, it is also possible to make a distinc-
tion between small groups that do not stain for acetylthiocholines-
terase (called striosomes or patches) located among the larger
amount of neurons that do (collectively known as the matrix;
Gerfen, 1992; Graybiel & Ragsdale, 1978). Striosome neurons are
special in that they project preferentially to the dopaminergic
neurons of the SNc (Gerfen, 1984; Gerfen, Baimbridge, & Miller,
1985).

Due to the dominant inhibitory pressure exerted by striatal
interneurons (which is described in the next section), projection
neurons are predominantly silent and inactive at rest (Wilson &
Groves, 1981). Cortical activity is not sufficient, per se, to trigger
action potentials in projection neurons. Cortical signals, however,
are capable of leading them into the up state, a condition where a
burst of action potentials can be easily triggered by either an
additional increase in excitation or a drop in inhibition (Bolam et
al., 2000; Tepper & Bolam, 2004; Wilson, 1993). Therefore,
despite receiving most of the cortical afferents, the response of
projection neurons is controlled and modulated by other factors,
which include the inhibition from interneurons and the local re-
lease of important neurotransmitters like dopamine.

Interneurons in the Striatum

Striatal interneurons compose up to 23% of the cells in primates
(Graveland et al., 1985). There are two main types of interneurons:
GABAergic (which can be further classified in different subtypes;
see Tepper & Bolam, 2004, for a review) and cholinergic inter-
neurons. The relationship between projection neurons, GABAergic
interneurons, and cholinergic interneurons is summarized in Fig-
ure 2.

GABAergic interneurons target mainly projection neurons; in
fact, they are the projection neurons’ main source of inhibition
(Koos & Tepper, 1999; Koos et al., 2004; Mallet, Le Moine,
Charpier, & Gonon, 2005; Tepper & Bolam, 2004). They also
receive widespread cortical projections. Whereas cortical afferents
to projection neurons are organized topologically, afferents on
interneurons are more convergent, with inputs from different cor-
tical areas converging on the same interneurons. This makes them
an ideal site for integrating information from different areas
(Bolam et al., 2000).

Cholinergic interneurons target both interneurons and projection
neurons. They have an excitatory effect on GABAergic interneu-
rons (Tepper & Bolam, 2004) and a powerful inhibitory effect on

Figure 2. A simplified representation of the connections between different
types of striatal neurons (adapted with modifications from Tepper & Bolam,
2004). SP � striatopallidal projection neuron; SN � striatonigral projection
neuron; Da � dopaminergic neuron; ACh � cholinergic interneuron; IN �
GABAergic interneuron; “�” � excitatory connection; “�” � inhibi-
tory projection; SNc � pars compacta of the substantia nigra; VTA �
ventral tegmental area; GPe � external part of the globus pallidus;
SNr � pars reticulata of the substantia nigra; GPi � internal part of the
globus pallidus.
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projection neurons (Pakhotin & Bracci, 2007). These interneurons
are believed to be tonically active neurons (TANs). TANs have
elevated tonic activity at rest, but their firing rate drops suddenly
at the onset of behaviorally significant stimuli (Apicella, 2002,
2007; Morris, Arkadir, Nevet, Vaadia, & Bergman, 2004). These
neurons are also thought to receive widespread cortical connectiv-
ity and have been suggested to play an important role in detecting
and encoding contextual information for action application (Api-
cella, 2007). The suspension of cholinergic response is known to
be crucial to reduce the activity of GABA interneurons (Koos &
Tepper, 2002), which in turn permits projection neurons to fire.

It is crucial to understand what causes the pause in the TANs’
response. Research suggests that these neurons become inactive
after an initial excitatory activity. Thus, an initial cortical stimu-
lation briefly excites TANs, and this excitation determines a sub-
sequent transient pause that allows projection neurons to fire
(Reynolds, Hyland, & Wickens, 2004; Reynolds & Wickens,
2004). This provides a possible mechanism by which cortical
signals can be gated to projection neurons and, hence, proceed
through the circuit.

In summary, striatal interneurons are in an ideal position for
integrating signals for diverse cortical areas. By maintaining or
releasing their inhibitory output on SN and SP cells, striatal inter-
neurons are capable of modulating the response of large ensembles
of projection neurons and ultimately of influencing the entire
output of the circuit.

Cognitive Functions of the Basal Ganglia

The most obvious symptoms of basal ganglia pathologies are
movement disorders. Therefore, their contributions were initially
thought to be limited to motor control. Converging evidence from
single-cell recordings, lesion studies in humans and animals, and
brain imaging studies in humans have challenged this view and
have made it clear that the basal ganglia play important roles
outside the motor sphere. In fact, the range of their contributions
spans many different cognitive faculties. These include procedural
memory (Packard & Knowlton, 2002), habit and skill learning
(Knowlton, Mangels, & Squire, 1996), attention (Ravizza & Ivry,
2001; Teicher et al., 2000), perception (L. L. Brown, Schneider, &
Lidsky, 1997), and language (Prat, Keller, & Just, 2007; Teich-
mann, Dupoux, Kouider, & Bachoud-Levi, 2006; Ullman et al.,
1997). Experimental evidence suggests that the basal ganglia con-
tribute to even higher level cognitive functions, like planning
(Anderson, Albert, & Fincham, 2005; Dagher, Owen, Boecker, &
Brooks, 2001), syllogistic reasoning (Goel, Buchel, Frith, &
Dolan, 2000), and mathematical problem solving (Anderson, 2005;
Stocco & Anderson, 2008).

Stimulus–Response Association Learning in Animals

Many authors have suggested that the basal ganglia circuitry is
the key component of a specialized memory subsystem. This
subsystem mediates the acquisition of stimulus–response associa-
tions (Knowlton et al., 1996; Mishkin & Petri, 1984; Packard,
Hirsh, & White, 1989; Packard & Knowlton, 2002). Lesion studies
in rats (e.g., Kesner, Bolland, & Dakis, 1993) and monkeys (e.g.,
Fernandez-Ruiz, Wang, Aigner, & Mishkin, 2001; Teng, Stefa-
nacci, Squire, & Zola, 2000) have provided evidence that basal

ganglia lesions impair the acquisition of motor responses that are
conditional on discriminating stimuli. Additionally, in vivo elec-
trophysiological recordings in animals have shown that the acqui-
sition of new habits results in major changes in the spiking patterns
of the basal ganglia neurons (Jog, Kubota, Connolly, Hillegaart, &
Graybiel, 1999).

In rats, this stimulus–response memory system can be dissoci-
ated from the hippocampus system, which mediates the acquisition
of spatial memories. A comparison of lesion effects in the two
structures highlights the differences of the corresponding memory
subsystems (see Packard & Knowlton, 2002, for a review). For
instance, rats can be trained to visit all the arms in a radial maze
in order to receive food. This task requires keeping track of the
visited locations, and rats with hippocampal lesions are unable to
perform it correctly. Basal ganglia lesions, on the other hand, do
not affect performance on this task. However, when the task is
changed so that rats have to visit all the lit arms of a maze, one can
observe the opposite pattern: Basal ganglia lesions, but not hip-
pocampal lesions, impair performance (Packard et al., 1989). Sim-
ilarly, lesions of the basal ganglia impair rats in finding a platform
in a water tank when the platform location varies across trials but
is consistently predicted by a visual cue. Lesions to the hippocam-
pus, on the other hand, impair rats in finding the platform when it
is kept in the same location but the visual cues are varied (Packard
& McGaugh, 1992).

In a particularly elegant experiment, Packard and McGaugh
(1996) put rats in one arm of a plus-maze. Food was consistently
positioned at the end of either the left or the right arm. After rats
were successfully trained to find the food, the authors chemically
knocked out either the rats’ hippocampus or caudate nucleus. The
animals were then put in the opposite maze arm, while the food
was kept in the same location. Rats with impaired caudate nucleus
relied on the hippocampus-mediated place memory and went back
to the food location. This required them to make a turn in the
opposite direction to what they had previously learned. On the
contrary, rats with impaired hippocampus fell back on their pre-
served stimulus–response memory, turning in the same direction as
they were trained, and thus ending up opposite to the food location
(Packard & McGaugh, 1996).

Nondeclarative Learning in Humans

Many authors think that, in humans, the basal ganglia mediate
the acquisition of nondeclarative knowledge, whereas the declar-
ative subsystem is supported by the hippocampus (Knowlton et al.,
1996; Squire, 1992; Squire & Zola, 1996; but see Reder, Park, &
Kieffaber, 2009, for a critique of this taxonomy). However, it is
often difficult to dissociate these two types of knowledge. One way
to isolate the nondeclarative subsystem is to use tasks that require
the acquisition of complex sensorimotor skills. It has been shown,
for example, that patients with basal ganglia disorders, such as
Parkinson’s disease, are impaired in learning mirror reading,
whereas amnesic patients with hippocampal damage are not
(Cohen & Squire, 1980). Similarly, patients affected by a basal
ganglia disorder known as Huntington’s disease are impaired at
adapting to wearing prism goggles, whereas patients affected by
Alzheimer’s disease (which affects the frontotemporal regions)
perform as well as controls (Paulsen, Butters, Salmon, Heindel, &
Swenson, 1993).
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Another way to isolate nondeclarative learning is to use prob-
abilistic classification tasks. One example of these paradigms is the
weather prediction task (Gluck & Bower, 1988; Knowlton, Squire,
& Gluck, 1994). In this task, participants have to predict “sun” or
“rain” on the basis of drawings on four different cards. Each
configuration of cards has a different probability of being associ-
ated with either of the two outcomes. The underlying assumption
is that complex arrangements of stimuli and nondeterministic
association between stimuli and response make this type of task
impossible to solve by relying on declarative memory. This as-
sumption is somewhat simplistic, and at least some participants do
indeed use declarative strategies (Gluck, Shohamy, & Myers,
2002). However, there is evidence that performance in the weather
prediction task depends at least partially on the basal ganglia.
Patients with Parkinson’s disease, for instance, are unable to
perform above chance level (Knowlton et al., 1994). Furthermore,
a neuroimaging investigation showed that performance in this task
correlates with activity in the caudate nucleus (Seger & Cincotta,
2005).

Another common nondeclarative learning paradigm is the serial
reaction time task and its variants. In a typical serial reaction time
task (e.g., Nissen & Bullemer, 1987), participants continuously
track the position of a dot on a screen by pressing the finger
corresponding to the dot’s location. The order of dot locations
repeats according to some pattern or rule. Participants’ latencies
usually decrease for those screen locations that are predictable,
thus exhibiting some form of learning. However, they are typically
unaware of the underlying organization of the sequence (e.g.,
Destrebecqz & Cleeremans, 2001), suggesting that their learning
was nondeclarative in nature. As in the case of probabilistic
classification tasks, it is hard to rule out subtle declarative influ-
ences (see Shanks & St. John, 1994, for a review). Nonetheless,
experimental evidence suggests that this task does tap into an
implicit learning system underpinned by the basal ganglia. Neu-
ropsychological studies have reported that patients with Hunting-
ton’s (Willingham & Koroshetz, 1993) or Parkinson’s disease
(Jackson, Jackson, Harrison, Henderson, & Kennard, 1995) are
typically unable to learn the hidden sequence. Also, neuroimaging
studies of serial reaction time tasks have reported that activity in
the striatum is correlated with implicit sequence learning (Doyon,
Owen, Petrides, Sziklas, & Evans, 1996; Peigneux et al., 2000;
Rauch et al., 1997).

In summary, experimental evidence suggests that the basal
ganglia circuit is part of a distinctive learning system. This system
underlies the acquisition of stimulus–response associations in an-
imals, and some forms of skills and procedures in humans.

Working Memory

The basal ganglia circuit is connected to prefrontal regions, such
as BA 46, that are also important for working memory (Middleton
& Strick, 1994). As expected, patients with either Parkinson’s or
Huntington’s disease are impaired in tasks tapping different forms
of working memory (Gabrieli, 1998; Gabrieli, Singh, Stebbins, &
Goetz, 1996; Lawrence, Sahakian, & Robbins, 1998; Owen, Iddon,
Hodges, Summers, & Robbins, 1997). Conversely, the administra-
tion of dopamine, which is used to ameliorate the conditions of
Parkinson’s patients, enhances their working memory performance
(Cooper et al., 1992). Working memory-related activity in the

basal ganglia has been reported in a number of neuroimaging
studies (Braver et al., 1997; Lewis, Dove, Robbins, Barker, &
Owen, 2004; Owen, Doyon, Petrides, & Evans, 1996; Rypma,
Prabhakaran, Desmond, Glover, & Gabrieli, 1999).

Recently, McNab and Klingberg (2008) directly investigated the
involvement of the basal ganglia in working memory in a neuro-
imaging experiment. They used a spatial working memory task,
where participants had to memorize the location of three or five
circles on a screen. The circles could be either red or yellow. Each
trial was preceded by a cue, which instructed participants to treat
the yellow stimuli as targets or distractors. The authors found that
basal ganglia activity in the period between cue and stimuli pre-
sentation was larger in the distractor trials then in the target trials.
This suggests a role for the basal ganglia in filtering out stimuli
that should not be included in the active set maintained in working
memory.

Besides McNab and Klingberg (2008), other studies have found
a correlation between individual differences in working memory
and basal ganglia activation. In two investigations of the neural
basis of individual differences in language comprehension, Prat
and colleagues found that individuals with high working memory
capacity showed greater recruitment of the caudate nucleus with
increasing task demands (Prat & Just, 2010; Prat et al., 2007).

Zhang et al. (2007) examined individuals expressing two genes
that determine the presence of D2 dopamine receptors in the
striatum. Participants were divided into those who carry only one
copy of the genes (heterozygotes) and those who carry two copies
(homozygotes). Heterozygotes produce smaller amounts of D2
receptors than do homozygotes. Correspondingly, their behavioral
performance in a working memory task was inferior to that of
homozygotes. The authors also recorded participants’ brain activ-
ity in a functional magnetic resonance imaging (fMRI) scanner.
Subsequent analysis showed that heterozygotes’ activity in the
striatum was significantly smaller that that of homozygotes, sug-
gesting less resource utilization and more efficient processing in
the striatum.

Reward Processing and Decision Making

The basal ganglia also figure prominently among those struc-
tures responsible for reward processing and reward-based learning.
A number of landmark single-cell recording studies in monkeys
have shown that the spiking rates of dopamine neurons projecting
to the striatum encode different aspects of reward-related informa-
tion (Schultz, Apicella, & Ljungberg, 1993; Tobler, Fiorillo, &
Schultz, 2005). In these studies, monkeys undergo a conditional
learning procedure by which a conditional stimulus (e.g., a light)
comes to be associated with a reward (i.e., orange juice). Dopa-
mine neurons projecting to the striatum are initially responsive to
the juice administration. During the conditioning phase, however,
dopamine bursts appear when the conditioned stimulus is pre-
sented and not when the actual reward is given. Furthermore,
delaying or omitting a reward causes a decrease in the response of
dopamine neurons at the time when the reward was expected.

This pattern clearly does not reflect reward per se, but rather the
difference between the actual and the expected reward. In fact,
the activity of dopamine neurons can be accurately predicted on
the basis of an algorithm known as temporal difference (TD)
learning (Sutton, 1988). This algorithm estimates future rewards
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on the basis of the difference between reward predictions at two
consecutive moments in time. The dopamine response closely
mirrors the error term that encodes this difference (Barto, 1995;
Schultz, Dayan, & Montague, 1997). Neuroimaging techniques
made it possible to replicate these learning tasks in humans.
Patterns of activation that reflect the reward expectancy error (and
thus the modulatory effect of dopamine signals) were found in the
striatum (O’Doherty, Deichmann, Critchley, & Dolan, 2002).

Taken together, these studies show that striatal activity is mod-
ulated by reward signals. One might wonder, however, how ex-
actly these signals are employed by the basal ganglia and trans-
lated into behavior. Given their role in learning, one possibility is
that the basal ganglia use the difference between predicted and
actual rewards as a feedback signal to direct learning from one’s
own errors. If this is the case, basal ganglia disorders should also
impair learning depending on performance feedback. In fact, pa-
tients with Parkinson’s disease show abnormal learning and error
patterns in a binary choice task where the two options have
different reward probabilities. In particular, their deprivation of
dopamine signal has the effect of making patients more sensitive to
errors than to correct trials, and therefore more able to discriminate
between low-reward stimuli than between high-reward stimuli.
Conversely, patients under dopamine medication show an opposite
pattern of response, discriminating better between high-rewarding
stimuli (Frank, Seeberger, & O’Reilly, 2004).

Because reward signals in the basal ganglia reflect the predicted
value of possible options, they provide a natural basis for decision
making. Consistent with this hypothesis, neuroimaging studies
have provided mounting evidence that the striatum is one of the
pivotal regions that activates in decision-making tasks (Montague,
King-Casas, & Cohen, 2006; O’Doherty, 2004). For example,
striatum activation correlates with a decision’s expected reward
and risk (Preuschoff, Bossaerts, & Quartz, 2006). Also, individual
differences in loss aversion in decision-making tasks correlate with
individual differences in striatal activity (Tom, Fox, Trepel, &
Poldrack, 2007).

Computational Models of the Basal Ganglia

Interest in the basal ganglia has spawned many modeling at-
tempts. Different models focus on different characteristics of this
circuit. For instance, many important models deal with the role of
the basal ganglia in motor programming (e.g., Humphries, Stewart,
& Gurney, 2006). Other models simulate specific aspects of the
basal ganglia physiology, such as the interactions of different
neurotransmitters (Kötter & Wickens, 1995; Wickens, Alexander,
& Miller, 1991; Wickens & Arbuthnott, 1993) or the generation of
signature spike patterns (Humphries et al., 2006; Terman, Rubin,
Yew, & Wilson, 2002). This section briefly reviews only those
models that deal with the cognitive functions of the basal ganglia.
This section loosely follows a taxonomy introduced by Gillies and
Arbuthnott (2000) and outlines the differences between existing
models and our approach.

Reinforcement Learning

The involvement of the basal ganglia in reward-based learning
has attracted many modeling attempts (see Joel, Niv, & Ruppin,
2002, for an in-depth review). These models implement possible

ways by which the basal ganglia learn to correctly predict the
expected value of an action on the basis of its previous rewards.
They usually import methods and algorithms from the reinforce-
ment learning literature in artificial intelligence (e.g., Sutton &
Barto, 1998). The connection between reinforcement learning and
the basal ganglia relies on the striking similarity between the
intensity of the dopamine signal that innervates the striatum, on
one side, and the error term in reinforcement learning. This error
term, known as the temporal difference (TD), is used to update an
action’s predicted value in the TD-learning algorithm (Sutton,
1988). Although there are basal ganglia models that are based on
different reinforcement algorithms (e.g., Dominey, Arbib, & Jo-
seph, 1995; O’Reilly & Frank, 2006), TD-learning-based models
are the most common and possibly the most successful.

One influential account (Barto, 1995) uses the error term within
a computational architecture composed of an actor and a critic.
The actor learns to execute the action that maximizes the predicted
reward. The critic learns to correctly predict the value of each
action by correcting its estimated reward by the error term. Barto
(1995) proposed that the actor and the critic correspond to the
matrix and patch compartments of the striatum, respectively, and
the error term is conveyed by SNc dopamine neurons. Thus, patch
neurons learn to associate stimuli with their expected rewards, and
matrix neurons learn to associate stimuli with rewarding actions.

Barto’s (1995) original framework is still influential (Montague,
Hyman, & Cohen, 2004; Schultz, Dayan, & Montague, 1997), and
many researchers have elaborated upon it. For example, Suri and
Schultz (1998) introduced a more robust actor based on competing
units, and Suri, Bargas, and Arbib (2001) introduced a more
complex mechanism for selecting actions based on the opposition
of the direct and indirect pathways.

Other models have improved the critic component. In the model
by Houk, Adams, and Barto (1995), striosomes project to the SNc
through the direct and indirect pathways. The signal carried by the
direct pathway is the current reward prediction. The indirect path-
way, because of its longer path and additional inhibitory synapses,
carries the previous reward prediction (with opposite sign). The
sum of these two quantities is the prediction error, as used in the
TD-learning algorithm. It is also the input of dopamine neurons,
which feed the error signals back to matrix and striosome neurons
in the striatum.

The model by Houk et al. (1995) depends on bidirectional
connectivity between striosomes and the SNc. This assumption
does not match with physiology (see Joel et al., 2002, for a review
of this problem), and subsequent models relaxed it. In these
models, striosomes deliver only an inhibitory signal that reflects
the opposite of predicted reward. The current reward, instead, is
provided by excitatory connections from prefrontal cortex
(Contreras-Vidal & Schultz, 1999) or from the pedunculopontine
nucleus (J. Brown, Bullock, & Grossberg, 1999).

Some authors have questioned the equivalence of dopamine
signals with reward predictions errors. It has been noted that
dopamine neurons also fire under circumstances that lie beyond
the scope of reinforcement. For instance, they respond to uncer-
tainty (Fiorillo, Tobler, & Schultz, 2003) and novelty (Redgrave &
Gurney, 2006) and unexpected rewards (Schultz, 1998). Finally,
some authors have argued that the dopamine response is really too
rapid to reflect adequate estimates of prediction errors (Redgrave
& Gurney, 2006).
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TD-based models tend to cover only a rather specific portion of
the spectrum of the cognitive functions of the basal ganglia. For
instance, none of the models reviewed above are concerned with
the issues of skill acquisition or working memory update; these
functions are the focus of this article.

On the other hand, these models have worked out in remarkable
detail the connection between the dopamine system and the basal
ganglia (see Montague et al., 2004). This makes it easier to
integrate reinforcement techniques within larger models of the
basal ganglia (e.g., Dominey et al., 1995; O’Reilly & Frank, 2006).
These integrated approaches have proven both useful and power-
ful. Our model also follows this path, providing a detailed account
of how dopamine release and caudate activity are affected by both
reward and learning.

Serial Processing

Some functions of the basal ganglia are serial in nature. This is
the case, for instance, of motor skill acquisition or sequence
learning. This fact has spurred a number of models that investi-
gated the possible neural substrates of sequence learning in the
basal ganglia. Some of them (e.g., Beiser & Houk, 1998; Dominey
et al., 1995; Suri & Schultz, 1998, 1999) rely on reinforcement
learning techniques, so that the basal ganglia could learn to asso-
ciate the proper action with a stimulus representing the proper
position within a sequence. In some models, serial positions are
represented externally, in the form of consecutive environmental
cues (Suri & Schultz, 1998, 1999). In other models, positional cues
are represented internally, in the form of representations in the
prefrontal cortex (Beiser & Houk, 1998; Dominey et al., 1995).

Berns and Sejnowski (1998) followed a different approach,
where the serial order of actions is directly encoded in the basal
ganglia. Their model assumes that processing of stimuli is delayed
in time along the indirect pathway. Therefore, this pathway can
hold a temporary representation of the previous action. This tem-
porary representation is fed back to the GPe and used to associate
two consecutive steps in a sequence of operations.

Our model does not include any special mechanism for se-
quence learning. However, as long as external or internal repre-
sentations can discriminate between different serial positions, the
model is able to execute operations in an ordered sequence.

Gating Functions and Working Memory

Redgrave et al. (1999) argued that many aspects of the basal
ganglia physiology could be understood in terms of a general
device that allows selection of information and inhibition of com-
peting programs. Gurney, Prescott, and Redgrave (2001) provided
an original account of this gating mechanism. In their model, an
action is generally defined as the opening or closing of particular
input channels that flow from the cortex through the striatum. The
activation of a neuron within a channel indicates its salience. Two
competing pathways that converge on the output nuclei concur in
selecting the appropriate channels. These two routes only margin-
ally overlap with the direct and indirect pathways. In the model,
the first route proceeds from the cortex to the striatum and the
output nuclei. Here, lateral inhibition among striatal units is in-
strumental in enhancing the difference in salience among the
active input channels. A second pathway proceeds from the cortex

through the STN and the output nuclei; it computes the sum of
saliencies of all the competing actions. Active channels are com-
pared to this background activity, and only the most active ones are
disinhibited.

In Gurney et al.’s (2001) model the basal ganglia gate signals to
the frontal cortex. This view offers a natural connection with the
role of the basal ganglia in working memory, where several studies
(e.g., Lewis et al., 2004; McNab & Klingberg, 2008) have shown
that the basal ganglia control the access of new information to a
short-term store. Many subsequent models, including ours, have
capitalized on this idea. Other related models include those of
Amos (2000) and Monchi, Taylor, and Dagher (2000).

The FROST (FROntal, Striatal, Thalamic) model by Ashby, Ell,
Valentin, and Casale (2005) takes an original stance on the role of
the basal ganglia in working memory. In contrast to the majority of
working memory models (e.g., O’Reilly, Braver, & Cohen, 1999),
FROST does not assume that items in working memory are ac-
tively maintained by recurrent connections within prefrontal cor-
tex. Instead, activation is maintained by three parallel loops con-
necting prefrontal cortex with parietal cortex, the basal ganglia,
and the thalamus directly. The FROST model is thus capable of
explaining the existence of sustained activation in cells outside the
prefrontal cortex, like in the head of the caudate or the thalamus.
Additionally, the FROST model includes a sophisticated architec-
ture of how the different cortical layers are connected to the
cortical, striatal, and thalamic loops. Our model also pays attention
to the role of different cortical layers, and it was influenced by
FROST’s assumptions.

The FROST model, however, does not address specific issues of
the basal ganglia physiology, such as the existence of the direct
and indirect pathways and the internal architecture of the striatum.
These physiological constraints play an important role in the
PBWM (Prefrontal cortex–Basal ganglia Working Memory)
model by Frank, Loughry, and O’Reilly (2001). In contrast to
FROST, the PBWM model assumes that active maintenance of
items in working memory occurs spontaneously through recurrent
connections in prefrontal regions and that the basal ganglia mod-
ulate this process of active maintenance. In turn, their activity is
the result of the opposing effects of the direct and indirect path-
ways. When the direct pathway is the more active, it transmits a
“go” signal the corresponding region. This signal has the effect of
temporarily disabling the recurrent connections and interrupting
the maintenance of representations. And when the recurrent con-
nections are disabled, new contents from posterior regions can be
copied in, letting them overwrite the existing representation. The
indirect pathway, on the other hand, encodes a “no-go” signal that
protects prefrontal representations by preventing new contents
from being copied.

The PBWM model is arguably the closest to our approach.
There are, however, three significant differences. First, although
PBWM does include a gating mechanism, it does not include full
routing capabilities. When a group of cortical neurons receives a
“go” signal, any incoming representation can be gated. Ultimately,
the model depends on appropriate cortical connectivity to make
sure that representations always reach the correct destination. In
our model, on the other hand, striatal subdivisions contain a
representation of their corresponding cortical region’s connectivity
and are able to tune the routing of information more precisely.
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A second point of disagreement concerns the computational role
of striatal interneurons. PBWM works virtually in absence of any
significant contribution from these cells. On the contrary, they are
known to play an important computational role in silencing the
spiny neurons (Koos et al., 2004; Tepper & Bolam, 2004). Our
model acknowledges the principal role of interneurons in deter-
mining striatal responses.

Finally, PBWM differs from our model in term of learning
capabilities. Although the PBWM is able to learn new gating
patterns by means of reinforcement learning, it is unable to further
simplify the sequence of learned procedures. As such, it does not
possess the skill-learning capabilities that we demonstrate in our
model. This difference is a consequence of the underlying assump-
tions about the capabilities of striatal projection neurons. In
PBWM, they simply encode a binary go/no-go signal. In the
routing model, on the other hand, they can incorporate larger
amounts of information, which can be later used as a substitute for
cortical representations.

An important, general-purpose role of the basal ganglia has been
put forward within the ACT–R (Adaptive Control of Thought—
Rational) cognitive architecture (Anderson, 2007; Anderson et al.,
2008). ACT–R claims a functional correspondence between a
specific component of the architecture (the procedural module)
and the activity of the basal ganglia. The procedural model exe-
cutes operations in the form of condition–action rules. Each rule
responds to specific contents of module buffers, which correspond
to consciously available representations held in the cortex (Ander-
son et al., 2008). This correspondence has led to a number of
interesting and hitherto untested predictions in the past. It has been
shown that activity in the caudate nucleus, as indexed by oxygen
consumption in fMRI experiments, increases linearly with the
number of individual cognitive steps in a task (Anderson, 2005),
decreases with practice (Anderson, 2005), and increases with the
amount of information that is transferred by each individual oper-
ation (Stocco & Anderson, 2008).

The ACT–R view of the basal ganglia had a significant influ-
ence on our model. There are, however, a number of differences
between our model and ACT–R. First, in ACT–R the basal ganglia
system provides a much more central role than in our proposal.
This is because ACT–R lacks direct module-to-module communi-
cation, and the transfer of information can happen only within the
basal ganglia. Our model, on the other end, assumes the existence
of cortico–cortical connectivity and describes the role of the basal
ganglia in the context of these existing pathways.

Another difference concerns the role of the basal ganglia as a
bottleneck for the entire system. ACT–R assumes that only one
specific production rule can be executed at any given moment—
that there is no parallel processing in the basal ganglia. Although
such a commitment can be incorporated in our model, it does not
emerge from internal constraints. The number of independent
actions that can be performed at any instant is ultimately a function
of the striatal resources each of them consumes. Therefore, the
limitation is on the overall complexity of actions, and not on their
number.

Learning and Skill Acquisition

One crucial contribution of the basal ganglia is their role in habit
learning and skill acquisition. Unlike habit learning, which de-

pends on reward, skill acquisition is based on practice and results
in the development of automatic procedures (e.g., Shiffrin &
Schneider, 1977). In contrast to habit learning, skill learning is not
frequently addressed by computational models. Among the excep-
tions is the SPEED (Subcortical Pathways Enable Expertise De-
velopment) model by Ashby, Ennis, and Spiering (2007). SPEED
was designed to account for automaticity in categorization. The
processes it models, however, generalize easily to both habit and
skill acquisition. SPEED assumes that the striatum is needed for
the acquisition of associations between a sensory stimulus and a
task-dependent motor response. This association is initially estab-
lished in the basal ganglia circuit by a dopamine burst occurring
when a correct categorization response is made. The basal ganglia
subsequently bias the cortex toward the response that is more
closely associated with a positive feedback. By means of Hebbian
learning, the stimulus–response association is eventually encoded
directly within the cortico–cortical pathways. This learning mech-
anism is relevant for skill acquisition because it provides a detailed
account of how an initially goal-directed behavior becomes au-
tomatized. Other important models (e.g., Frank & Claus, 2006)
also proposed similar mechanisms where the basal ganglia facili-
tate the creation of stimulus–response associations between corti-
cal areas. Our routing model differs from them because it postu-
lates an intermediate phase where the skills are encoded in the
striatum. Also, these models assume that the necessary dopamine
burst is triggered by a performance reward for the correct response.
Our model, on the other hand, includes an internal mechanism that
modulates dopamine to learn new skills.

The ACT–R cognitive architecture possesses an original skill
acquisition mechanism. This algorithm, called production compi-
lation (Taatgen & Lee, 2003), consists of merging two production
rules that fire consecutively into a single-step rule. In contrast to
SPEED, in ACT–R all the learned skills remain confined to the
procedural module, and learning never involves the establishment
of direct transmission of information between cortical areas. This
algorithm has been influential in shaping the skill-learning mech-
anism described in this article, and our model can be considered
the first effort to provide a biological account for production
compilation. However, our model differs from production compi-
lation because it does not assume the procedural knowledge is
permanently stored in the basal ganglia and acknowledges the
important role of cortico–cortical pathways as the final repository
of skills.

The Routing Model

As anticipated above, this article proposes that the main function
of the basal ganglia is to direct the flow of information processing
in the cortex. Specifically, we propose that the “actions” per-
formed by the basal ganglia can be thought of as routing opera-
tions. Routing operations define which signals are transferred
between pairs of cortical regions. In particular, routing operations
trigger one (or more) target cortical area, called the destination
region, to accept and process information from one (or more) other
region, called the source region. Such a mechanism enables the
basal ganglia to perform general-purpose computations. This
framework takes the form of a computational model, which we
refer to as the routing model, and whose structure and principles of
operation reflect known facts about the basal ganglia. The next
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sections introduce the model, present a number of simulations, and
demonstrate how routing operations can be easily shaped and
modified by practice, providing insights into the skill-learning
mechanisms of the basal ganglia.

The routing model is implemented as a neural network.1 The
model architecture mirrors the most important features of basal
ganglia anatomy and is visually represented in Figure 3.2 Before
going into the implementation detail, we begin with a brief over-
view.

In the model, cortical areas are constantly communicating with
each other along cortico–cortical pathways (see the top layer of
Figure 3). In most cases, cortico–cortical signals are not strong
enough to significantly affect the representations held in a region.
In addition to communicating with each other, each cortical area
transmits signals to a corresponding subdivision of the striatum.
Each striatal subdivision receives afferents from one correspond-
ing cortical region. Within a subdivision there is an internal orga-
nization of ensembles of neurons corresponding to the cortical
destinations that the contents of the source region might be sent to.
Thus, striatal subdivisions reflect cortical topology at two levels.
At a macro level, they mirror the organization of cortex into
specific regions (see the striatum in Figure 3). At a lower level,
each of them reflects the organization of cortical connectivity of
the projecting cortical region. This two-level organization is mir-
rored in the other nuclei of the circuit as well. If one assumes that
each model cortical region is connected to every other one, this
two-level organization can be easily visualized in form of a matrix,
as in Figure 3. Note that a real biological system does not need to
represent all the possible source–destination pairs and saves con-
siderable resources by representing only those that correspond to
existing cortico–cortical pathways.

In the striatum, the activation of SN neurons determines which
contents will be selected, and the activation of SP neurons deter-
mines where they will be routed. As explained above, the opposite
contributions of SN and SP neurons travel along the direct and
indirect pathways and eventually sum up in the SNr/GPi. Their
sum determines which destination the selected cortical represen-
tation will be transferred to. When the activity of an SP ensemble
is not sufficient to contrast the effect of the corresponding SN
group, the SN signal is transmitted through the thalamus and
henceforth to the cortex.

Each ensemble of cells in the output nuclei SNr/GPi projects to
the corresponding ensemble of units in the thalamus. We refer to
each ensemble of neurons encoding a specific source–destination
pairing as a thalamic subdivision. Through the thalamus, the signal
reaches the appropriate destination regions, providing the neces-
sary local bias to let the source region’s signal come in. It is
important to note that this architecture does not imply that thalamic
subdivisions project to different cortical regions. On the contrary,
projections from a thalamic subdivision are specific and focal to
their cortical targets and do not diffuse over different regions.
Within the same thalamic subdivision, different cells simply
project to cortical neurons within the same area that receive
afferents from different cortical regions. It is only because of this
reason that they can modulate the different contributions of dif-
ferent cortical afferents.

The state of activation in the model thalamus provides a useful,
condensed representation of the contents that have been selected
and where they are being routed to. In fact, this article often uses

the state of the thalamus as an indicator of the routing operations
that have been performed by the basal ganglia. Routing operations
can take fairly complex forms. Figure 4 illustrates three such cases,
corresponding to the routing of one (top), two (middle), or three
(bottom) contents from two different regions. As shown in the
figure, the model is capable of performing transfers that require a
convergence of multiple sources over the same destination.

Model Implementation

As it is common in connectionist models (Amit, 1993; O’Reilly
& Munakata, 2000; Rolls & Treves, 1998), the model neurons
consist of simple computational units that calculate an activation
value from their inputs. The activation value is always in the range
[0, 1] and represents the normalized firing rate of that neuron. The
neuron’s input consists of the sum of all the projecting neurons’
activations, weighted by their corresponding synaptic strengths.
Synaptic strengths are represented as scalar values, called weights.
Weights are negative for inhibitory synapses and positive for
excitatory ones. Appendix A provides a detailed overview of the
rules that govern the behavior of the model neurons, and Table A1
offers a concise summary of the equations and parameters that
govern each type of neuron’s response.

With respect to basal ganglia physiology, a number of simpli-
fying assumptions have been made. They were needed to keep the
model simple and to avoid introducing ad hoc mechanisms and
parameters. The assumptions are the following:

Simplifying Assumptions

Simplifying Assumption 1. The SNr and the GPi have been
treated as a single nucleus, which is referred to as the SNr/GPi.
This is consistent with the anatomical and functional similarity
between the two nuclei (e.g., Albin et al., 1989; Bolam et al., 2000)
and is a common practice in basal ganglia models (Ashby et al.,
2005; Frank et al., 2001; Monchi et al., 2000; O’Reilly & Frank,
2006).

Simplifying Assumption 2. The model’s indirect pathway
includes only projections from the GPe to the SNr/GPi, omitting
the intermediate station of the STN. This is due to the fact that, in
the model’s architecture, the longer projections that proceed
through the STN eventually convey a similar signal. This simpli-
fying assumption is common to other models (e.g., Frank et al.,
2001; O’Reilly & Frank, 2006). Note that projections from the
STN to the SNr/GPi are actually included in the model as part of
the hyperdirect pathway (see Figure 3).

Simplifying Assumption 3. The “feedbackward” projections
that reach back to the striatum from the GPe and from the thalamus
have been left out of the model. It has been often suggested that
these projections have important control and feedback functions
(e.g., Redgrave et al., 1999). However, feedback and processing
control was not necessary for our model to run.

1 The entire model code is available for download at http://act-r
.psy.cmu.edu/publications/pubinfo.php?id�828

2 For clarity’s sake, the depicted model contains fewer cells and fewer
cortical regions than actually used in most of the simulations. Additionally,
simulated patterns are represented as bidimensional matrices instead of
unidimensional vectors.
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Simplifying Assumption 4. The direct cortico–thalamic
projections have been omitted from our model. This omission is
also common to other models (e.g., Ashby et al., 2007; Gurney
et al., 2001). Cortico–thalamic connections have been some-
times included as a means of maintaining activation in prefron-
tal cortex through a cortico–thalamo– cortical loop (e.g., Ashby
et al., 2005; Beiser & Houk, 1998) or as a means of ensuring
proper gating of signals between cortical regions (e.g., Frank et
al., 2001). However, our model does not deal with the dynamics
of working memory maintenance and does not require cortical
inputs to ensure proper gating. Therefore, the omission of
cortico–thalamic pathways does not undermine the model’s
validity.

Architecture of the Nuclei

In the model, four nuclei in the circuit (the striatum, GPe,
SNr/GPi, and the thalamus) have a two-level organization. At the
first level, their cells are organized into subdivisions that receive
afferents from the same cortical area. Throughout the article, we

refer to this area as the source region. At a second level, neurons
within each subdivision are divided into groups that reflect the
projections of the source region to other areas.

Many authors have advocated that the basal ganglia are orga-
nized into segregated loops that run parallel to each other (e.g.,
Alexander et al., 1986). Other authors have argued, on the con-
trary, that there is room for open-ended loops within the circuit
(Haber, 2003; Joel & Weiner, 1994; McFarland & Haber, 2002). It
should be noted that, although it permits open-loop exchange, the
proposed two-level architecture remains consistent with much of
the experimental evidence that supports the closed-loop view of
the basal ganglia. This is because, if one follows the projections
from a cortical area throughout the circuit, some of them will form
a separate loop that runs in parallel with other channels. To
examine the degree to which a loop is segregated, one applies both
anterograde and retrograde tracing methods to the same cortical
region and examines the overlap of their targets. Kelly and Strick
(2004) used this procedure and found that, in the monkey putamen,
the cells identified by anterograde tracing and retrograde tracing

Figure 3. Architecture of the model. The different cell colors reflect different degrees of activation, from black
(no activation) to white (maximum activation). The solid cortical arrow in the top layer illustrates which
source–destination binding has been performed by the basal ganglia; it corresponds to the transfer of a
representation from cortical region A to cortical region B. Excitatory projections are marked with a “�”;
inhibitory projections with a “�”; dopamine projections with a “Da.” STN � subthalamic nucleus; GPe �
external part of the globus pallidus; SNc � pars compacta of the substantia nigra; SNr � pars reticulata of the
substantia nigra; GPi � internal part of the globus pallidus.
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shared a common center but were only partially overlapping. This
is exactly what would be expected for a two-level, “switchboard”
organization as described here. This organization is also consistent
with previous findings by Parthasarathy et al. (1992), who found
that the degree of overlap between the striatal subdivisions tar-
geted by pairs of cortical regions reflects the degree of cortical
connectivity between the two.

Information Processing in the Striatum

The striatal matrix is the heart of the model. The matrix is
composed of SP and SN neurons, organized in parallel according
to the two-level system outlined above (see Figure 3). Active
neurons in SN ensembles signal that the corresponding cortical
region is a source region and that its contents have been picked up
for routing. Active SP ensembles within a subdivision, on the other
hand, prevent the corresponding destinations from receiving the
source contents. That is, the SP ensembles veto or mask undesired
destinations where the selected contents should not be routed.
Source and destination information travels separately along the
direct and the indirect pathways.

Cortical areas are larger and have more neurons than the striatal
subdivision they project to. Therefore, whatever patterns of infor-
mation they contain need to be compressed. Some authors have
actually hypothesized that one of the most important functions of
the basal ganglia is actually the functional reduction of cortical
representations (Bar-Gad, Havazelet-Heimer, Goldberg, Ruppin,
& Bergman, 2000). In the presented model, each receiving neuron
covers a limited part of the projecting region. Its receptive field is
modeled as a Gaussian function, with maximum sensitivity to
those cortical neurons that occupy the same relative position
within the cortical array of neurons, as discussed in Appendix A.
The ratio of cortical projection neurons to striatal projection neu-
rons has been estimated to be about 10:1 (Zheng & Wilson, 2002).
Therefore, we adopted this ratio in the model implementation. In
addition to projecting to the direct and indirect pathways, each
projection neuron also makes inhibitory connections with its local
neighbors. As a result of their internal processing, SN neurons
contain a compressed version of the original cortical signal. When
transmitted through the basal ganglia, this compressed representa-
tion provides the necessary redundant signal that forces the desti-
nation region to receive information from the source region.

Under normal conditions, the model SN and SP ensembles are
inactive. Their lack of activity is due to the strong inhibitory effect
of striatal interneurons, which have an elevated baseline activity
(see Figure 3). The proper set of representations in the cortex
causes interneurons to momentarily cease firing. A sufficient re-
lease of inhibition makes it possible for projection neurons to be
excited by the incoming cortical signals. The precise pattern of
activation depends on the strength of the synapses between inter-
neurons and projection neurons, as well as the excitatory thresh-
olds of projection neurons (see Appendix A for details). In general,
the inhibition of different combinations of interneurons will acti-
vate different ensembles of SN and SP neurons and ultimately will
determine which cortical representation will be routed.

The model striatal interneurons were designed to capture the
contributions of both GABAergic and cholinergic interneurons
(see Figure 2). As such, they share features of both types of cells.
Like GABAergic interneurons, they do exert a constant inhibitory

Figure 4. A “balloon” representation of the activity of neurons in the
model thalamus in three example cases. In the plots, each circle repre-
sents the activation of an individual neuron in the model thalamus. The
amount of activation is reflected in both its circle size (from small to
large) and color (from black to white). In the model, the thalamus
receives projections from the output nuclei (SNr/GPi) of the basal
ganglia and maintains the same topological organization. Therefore, it
is convenient to illustrate the activity of its model neuron in source–
destination matrix arrangement. The pattern of neuron activity in the
thalamus provides a concise representation of the operation that has
been executed last. The three graphs illustrate three example cases. Top:
in this case, only one representation is transferred, from Region 5 to
Region 4. Middle: In this case, two transfers occur at the same time:
From Region 5 to Region 2 and from Region 3 to Region 5. Bottom:
This is a complex case. Three transfers occur at the same time. The
contents originate from three different regions (Regions 1, 4, and 5) but
affect only two destinations (Regions 1 and 2). Notice that Region 1
receives representations from two sources (Regions 4 and 5) at the same
time.
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pressure on projection neurons and prevent them from responding
to cortical stimulation under normal conditions. Like cholinergic
interneurons, they are tonically active until specific cortical pat-
terns of behavioral significance are detected. Interneurons are
capable of detecting complex patterns of cortical activity because
they receive widespread connections from different cortical areas.
To model the characteristic pause in TANs’ activity that follows
excitatory cortical inputs, the interneurons’ activation function was
modeled as an inverse sigmoid, which decreases as its input
increases (see Appendix A for details). Therefore, when proper
cortical inputs are detected, interneurons release their inhibition on
projection neurons, permitting the incoming cortical signals to be
processed. A later section illustrates how interneurons can be
trained to respond with the precise cortical pattern by means of
Hebbian learning.

Many models of the basal ganglia do not simulate the contri-
bution of striatal interneurons (e.g., Ashby et al., 2005, 2007;
Frank et al., 2001; O’Reilly & Frank, 2006). However, experimen-
tal evidence suggests that they play a crucial role in modulating the
response of striatal projection neurons (Tepper & Bolam, 2004).
Furthermore, their activity has been the subject of many experi-
mental studies (see Apicella, 2002, for a review).

Direct and Indirect Pathways

Projections from the SN and SP neurons originate the direct and
indirect pathways. Projections from the SN terminate on the SNr/
GPi—that is, on the output nuclei of the basal ganglia. The
SNr/GPi shares the same two-level organization as the striatal
matrix (see Figure 3). In particular, their organization closely
mirrors the organization of SN ensembles. Neurons in the SNr/GPi
have a sustained tonical activity, unless they are depressed by
afferents from the striatum or the GPe.

The model takes an original stance on the role of the indirect
pathway. According to the most common view of the basal ganglia
(Albin et al., 1989; DeLong, 1990), the direct pathway pushes for
the execution of a particular action by disinhibiting the thalamus,
whereas the indirect pathway exerts the opposite function by
maintaining the tonic activity of output nuclei cells. This influen-
tial hypothesis, commonly known as the brake–accelerator view
(e.g., Graybiel, 2000), is often assumed in computational models
of the basal ganglia (e.g., Frank et al., 2001). In the proposed
model, the two pathways carry different components of an action’s
representation—namely, the sources and the destinations. Despite
the apparent dissimilarity, this view can be seen as a generalization
of the brake–accelerator model. The signal coming from the direct
pathway can be seen as a command to transfer a representation to
all the cortical areas connected to the source region. The signal
carried by the indirect pathway, on the other hand, can be seen as
a stop signal that prevents the transfer to all but the destination
region. As in the brake–accelerator model, the correct execution of
an action depends on the balance between these two forces. The
similarity becomes more apparent if one considers the possible
consequence of an imbalance in the strength between the two
pathways. If the direct signal is weak, or the indirect signal is too
strong, no signal can be transferred. And if the direct signal is too
strong, or the indirect signal too weak, then the same representa-
tion is transferred inappropriately to undesired destinations. A later
section on how the model can simulate two common disorders of

the basal ganglia (Parkinson’s and Huntington’s diseases) illus-
trates these two cases.

The STN and the Hyperdirect Pathway

The model’s hyperdirect pathway proceeds from the cortex
through the STN to the SNr/GPi (see Figure 3). Additionally, STN
projections also target the GPe. Differently than the striatum, GPe,
SNr/GPi, or the thalamus, the model STN has only a simple,
first-level organization, where each subdivision corresponds to a
source cortical region. This fact is consistent with the closer
overlap between anterograde and retrograde tracings in the STN
than in the GPe (Kelly & Strick, 2004), which suggest that the
STN, contrary to other nuclei, is indeed organized in closed loops.

In the model, the tonic excitatory output of the STN contributes
to the tonic activity of inhibitory neurons in the pallidus and
substantia nigra, as previously suggested by Bevan and Wilson
(1999) and Nakanishi, Kita, and Kitai (1987). While a cortical
region is receiving signals from another region and updating its
representation, it also sends excitatory inputs to the corresponding
STN units. Inputs to the STN prevent the release of inhibitory
pressure to the thalamus. Therefore, excitation from the cortex
prevents signals from being relayed through the basal ganglia
system while a cortical region is still processing its own inputs.
This process paces the relaying of information from the striatum to
the output nuclei (e.g., Plenz & Kital, 1999) and provides a cortical
way to inhibit a preponderant response until realized. A cortical
region that is exciting the STN is sending a message that can be
translated as “hold your horses” (as suggested by Frank, Samanta,
Moustafa, & Sherman, 2007). This function is consistent with the
views of other authors (e.g., Nambu et al., 2002).

The Role of Cortico–Cortical Connectivity

The model relies on cortico–cortical connectivity for the last
step of the information-routing process. Since a realistic modeling
of cortico–cortical connectivity was beyond our modeling effort,
the organization of cortical connectivity information exchange has
been simplified. Essentially, a cortical area consists of a dedicated
group of neurons that stores and processes its internal representa-
tion and a set of units that receive incoming projections from other
cortical areas. These units work as an internal “gate” to the cortical
region. Thalamo–cortical projections (see Figure 3) work by tar-
geting and activating these units. In particular, selective activation
of one ensemble of units favors the transmission of information
coming from the corresponding cortical region. These “gate” neu-
rons also make excitatory synapses to the corresponding subdivi-
sions of the STN, thus temporarily restoring the output nuclei
inhibition of the thalamus (see Figure 3). Therefore, their activa-
tion permits the routing of new representations, and, at the same
time, prevents the delivery of new signals as long as the new
representation is being processed.

Relationship to Production Systems

From a purely computational point of view, routing operations
can be seen as a neural network analog to production rules in
production systems. Production rules are control statements ex-
pressed in the form of condition–action clauses (“if . . . then . . .”).
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The condition (or “right-hand side”) specifies when the rule can be
applied, whereas the action (or “left-hand side”) specifies what is
executed. The similarity between the conditional routing model
and a production system can be seen if one assumes the following:
A rule is embedded in the incoming and outgoing synaptic matri-
ces of a set of striatal interneurons. The condition part of the rule
is represented by incoming synapses. These, in turn, encode the
specific cortical representation that will trigger the interneuron to
fire. The action is encoded in the outgoing synapses to the striatal
projection neurons. An action corresponds to the activation of
particular ensembles of SN or SP neurons, which, in turn, trigger
the transmission information from the source region of the cortex
to the destination region.

Part of the flexibility of production systems originates from the
use of variables in the production rules. This is because variables
make it possible to use the same rule for different representations,
therefore capturing a general pattern of behavior. However, vari-
ables are not easily dealt with in neural networks. To overcome
this problem, a number of procedures have been proposed over the
years, like a special binding space (Touretzky & Hinton, 1988);
tensor product variable binding (Smolensky, 1990); temporal-
dependent binding (Ajjanagadde & Shastri, 1991); and holo-
graphic reduced representation (Plate, 1995; Stewart & Eliasmith,
2008), a representation format where single values can be unam-
biguously extracted from a combined form.

The routing model provides an alternative solution to the
variable-binding problem. In the model, a variable corresponds to
a specific cortical location. During the execution of routing oper-
ations, moving content from a source region to a destination region
corresponds to binding the variable in a pattern and using it to
create a new structure. Production rules also specify constants in
the structures they build, and this corresponds to transferring a
fixed content to a destination region. This case is illustrated in one
of the forthcoming sections on learning. This solution has the
advantage of being tied to a specific neurological substrate.

The similarity between routing operations and production rules
is important, because production systems have been proposed as a
general means to model cognition (Newell, 1973). In fact, produc-
tion systems have been successfully used as general models of
cognition. In particular, they have provided the framework for
cognitive architectures. A cognitive architecture specifies the
primitive elements of a cognitive system, so that each task can be
modeled simply by providing the system with appropriate task
knowledge (Anderson, 1983).

Different cognitive architectures have been proposed (Ander-
son, 1983, 2007; Just & Varma, 2007; Laird, Newell, & Rosen-
bloom, 1987; Meyer & Kieras, 1997a, 1997b). Among the existing
architectures, an identical perspective on the functions of the basal
ganglia is assumed in the ACT–R cognitive architecture. In
ACT–R, the selection and execution of rules is managed by a
specific module that is explicitly identified with the basal ganglia
and whose temporal course of activity has been successfully em-
ployed to predict the hemodynamic response in the head of the
caudate nucleus (Anderson et al., 2008). In fact, the model pre-
sented here was explicitly developed using ACT–R’s procedural
module as a reference for the functional properties to implement in
the circuit. It is interesting that a neural network implementation
was made of an earlier version of ACT–R (Lebiere & Anderson,
1993). Although not explicitly addressing issues of biological

plausibility, the original implementation anticipated some ideas
that have been developed here, as well as in other computational
models of the basal ganglia (e.g., the gating functions of the
circuit, as in Frank et al., 2001, and Gurney et al., 2001).

Model Performance

In developing our model, our focus was on how the basal
ganglia can perform general-purpose routing operations and how
their function can provide a flexible system and organize the flow
of processing within the cortex. Therefore, we mainly concentrate
on testing its capabilities and performance. We first illustrate how
the basal ganglia model can be used to perform a simple task.
Then, we test the model across a range of different configurations,
to show its robustness. Then, we show how the model can repro-
duce the effects of basal ganglia damage. Finally, we show how
Hebbian learning can enable the model to perform powerful com-
putations on its routing operations and how this results in changes
in activity in both striatal and cortical areas.

An Example Task

This section provides an example of how the model coordinates
a series of routing operations to perform a task. The example
paradigm is an aural discrimination task that has been used as part
of a dual-task experiment by Schumacher et al. (2001) and Hazel-
tine, Teague, and Ivry (2002). In this task, participants respond to
the presentation of a tone. Tones could have three different pitches
(220, 880, and 3,520 Hz), to which participants had to respond
“one,” “two,” or “three,” respectively.

This task requires assembling a number of basic cognitive
functions in a novel and arbitrary way and, therefore, depends on
controlling the flow of information among cortical areas. It is also
simple enough that its modeling requires very few assumptions.
With some differences in the details, various authors (Anderson,
Taatgen, & Byrne, 2005; Hazeltine et al., 2002; Schumacher et al.,
2001) have agreed that three basic processing steps are taking
place: (a) stimulus classification, during which the stimulus is
presented and appropriately encoded; (b) response selection, dur-
ing which the appropriate response is selected from the set of
possible options; and (c) response execution, where the chosen
response is eventually vocalized.

It is rather uncontroversial that the first and the third step rely on the
auditory and motor cortices, respectively (see Anderson, 2007, for an
fMRI investigation that confirmed this fact). More uncertain is the
localization of response selection. Anderson, Taatgen, and Byrne
(2005) proposed an ACT–R model that can successfully reproduce
most of the experimental findings. Following ACT–R’s mapping of
cognitive process onto brain regions (see Anderson et al., 2008), the
model implies that response selection recruits the left lateral inferior
prefrontal cortex. This interpretation is consistent with the established
role of this region in selecting among competing responses in word
generation and pair–associate tasks (Danker, Gunn, & Anderson,
2008; Sohn, Goode, Stenger, Carter, & Anderson, 2003; Thompson-
Schill, D’Esposito, & Kan, 1999). The specific involvement of this
region has been confirmed by an fMRI investigation of this task
reported in Anderson (2007, Figure 4.15c).

A simple cortico–basal ganglia circuit was generated to simu-
late the task. The circuit was simplified to contain only the three
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cortical regions required by the task. Correspondingly, the striatum
contained only three main subdivisions. It was further assumed
that each region was connected to the other two. In the model,
response selection was simulated as a two-phase step, where the
cortical region first attends to the encoded tone from the aural
region and then uses it as a cue to select the appropriate
response. To simulate the selection process, the model prefron-
tal region was connected to a data structure (perhaps corre-
sponding to the hippocampus) that could hold the long-term
representations of the three possible responses. The prefrontal
region sends its internal representations to this structure and
receives back the response pattern that is associated with the
best-matching input representations. Each cortical region con-
tained 100 artificial neurons.

Figure 5 illustrates how the model performs such tasks. The figure
reads top to bottom, left to right. The four panels on the left-hand side
represent the activation of the cortical units, divided into areas, at the
three stages of task execution. Note that the two middle panels
represent the two phases of response selection. Two routing opera-
tions are required to perform this task: They are represented in the two
right panels. The two routing operations are required to connect the
three task phases. Their implementation follows the model rules
described in Anderson, Taatgen, and Byrne (2005). These rules reflect
an initial level of task exposure, before participants’ performance has
been optimized by practice. The model was trained to perform these
two routing operations with a contrastive Hebbian learning (CHL)
procedure. The detailed procedure and the reasons why it was chosen
are described in Appendix B.
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Figure 5. A schematic illustration of how the basal ganglia perform the simple stimulus–response task chosen as
an example. In the figure, time flows vertically, from the top plots to the bottom. The four plots on the left represent
the states of the cortical regions at the four stages of the task (see main text for further details). The two plots on the
right illustrate the activation pattern in the thalamus at the moments where the two crucial routing operations are
executed. These patterns provide a representation of the operation performed by the basal ganglia. The first operation
causes the second region (retrieval) to receive the inputs from the first region (aural). The second operation causes
the retrieved response from the second region to be routed to the third region (vocal).
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In Figure 5, Panel A in the top left corner corresponds to the
state of the cortex when the auditory signal is first encoded. The
first routing operation is applied at this stage and consists of
directing the transfer of the tone representation to the prefrontal
region. The top right panel represents this routing operation. This
panel shows the state of activation of thalamic subdivisions, orga-
nized as a source–destination matrix. The active cells are located
in the subdivision that projects to the second (prefrontal) region
from the source region (aural).

Activation of these thalamic terminals determines the transition
to the second step, which is represented in Panel B. When the
prefrontal region has received the auditory cue, it responds by
selecting a pattern corresponding to the response associated with
the tone. This phase is represented in Panel C. Note that the model
assumes that this operation occurs within the cortex, and the basal
ganglia are not involved. The second routing operation (illustrated
in the bottom right panel) is triggered at this point and routes the
retrieved response to the vocal region, where it can be executed as
a vocal program. This corresponds to the final stage, illustrated in
Panel D.

General Performance

Having the model reproduce a particular task does not provide
sufficient information on its generality as an information-routing
device. A series of simulations were therefore carried out to
investigate the model’s performance. During the simulations, three
factors were varied parametrically. Two factors affect the model’s
configuration: the numbers of cortical regions (3, 6, 9, 12, or 15
regions) and the size of each cortical region (containing 50, 100,
150, 200, or 250 model neurons). The third factor was the number
of operations learned before being tested (5, 10, 15, 20, or 25
operations). This factor was chosen to examine the interference
among different possible courses of actions. Although the size of
cortical regions was varied parametrically, the size of each striatal
subdivision was kept constant across simulations. In particular,
each striatal subdivision contained 20 SN and 20 SP neurons. Also,
the number of neurons in each thalamic and SNr/GPi subdivision
was kept equal to 10. These values were kept constant so that each
different cortical region’s size would correspond to a different
ratio of cortex-to-striatum size.

For each training test, a specified number of operations were
generated randomly. Each operation was to be performed in re-
sponse to a different, randomly generated pattern of cortical rep-
resentations, and the model was trained on each of them. Training
was performed by means of the same modified version of CHL
that was used for the example task, and that is outlined in Appen-
dix B.3 During testing, one of the operations was then selected at
random, and its cortical pattern was presented to the model. The
pattern was propagated through the circuit, and the state of the
thalamic subdivisions was compared against the desired response.
The model was tested 100 times for each level of the three factors
(number of regions, cortical size, and number of operations). Trial
performance was assessed by comparing the state of the thalamic
subdivisions against the desired response. A trial counted as in-
correct whenever (a) there were active cells that did not correspond
to a proper source–destination binding or (b) the desired cells were
not active.

The number of incorrect trials was counted for each combina-
tion of factor levels. Each factor and each two-factor interaction
was then analyzed independently, using a fixed-effects statistical
model. The size of cortical regions did not have any significant
effect on the model’s performance, F(4, 120) � 0.23, p � .91, and
did not interact with the other factors, F(16, 100) � 0.55, p � .92.
On the other hand, the number of cortical regions, F(4, 120) �
23.14, p � .0001, of routing operations, F(4, 120) � 2.65, p � .03,
and their interaction, F(16, 100) � 6.38, p � .0001, were all
significant.

The left panel of Figure 6 illustrates the percentage of errors for
each combination of number of regions and operations, collapsed
across different sizes of cortical regions. It can be seen that the
probability of making an error increased with the number of
possible operations and decreased as the number of regions in-
creased. This increase in errors can be due to the fact that, as the
number of regions decreases, the routing operations’ patterns be-
come increasingly similar. Under such circumstances, undesired
source–destination bindings, which were supposed to be the re-
sponse of a different operation, might show up in addition to those
of the executed operations. To examine this possibility, we ana-
lyzed a different measure of model’s performance: the number of
additional bindings. An additional binding was defined as a tha-
lamic subdivision that contains active neurons but that does not
belong to the desired source–destination bindings. The analysis
confirmed our prediction. The number of additional bindings was
not affected by the cortical size or its interaction. However, like the
percentage of correct trials, this measure decreased with the num-
ber of regions, F(4, 120) � 11.52, p � .0001, increased with the
number of operations, F(4, 120) � 2.27, p � .06, and was affected
by their interaction, F(16, 100) � 2.17, p � .01 (see Figure 6, right
panel).

Summary

This section has presented an overview of the model’s capabil-
ities. The model’s capabilities were tested in two different ways.
First, it was shown how the model performs a simple stimulus–
response task. Second, it was shown how robust the model’s
performance is when a number of changes are made to its config-
uration (e.g., increasing size or increasing number of cortical
regions) and when the number of available responses is progres-
sively increased. Overall, the model’s robustness in face of large
changes in its structure confirms the efficiency of the basal ganglia
architecture for routing information.

Skill Acquisition

Computational models have shown that reward-based learning
is powerful enough to enable the acquisition of action sequences
(Berns & Sejnowski, 1998; Dominey et al., 1995; Suri & Schultz,
1998, 1999) and even the complex temporal dependencies of a
continuous working memory task (O’Reilly & Frank, 2006). This

3 To ensure that eventual errors made by the model in the test simulation
were not due to our learning algorithm, preliminary tests were performed
in which the model was tested under each combination of size and number
of regions after being trained to perform a single operation. The model was
always able to perform the learned operation accurately.
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article, however, focuses on the acquisition of new skills. The main
characteristics of this type of learning is that it is mediated by
practice and that it results in the development of automaticity, that
is, the ability to perform the acquired skills without the need for
central cognitive control (Shiffrin & Schneider, 1977).

In the model, procedural learning occurs because of practice-
related changes in the routing operations. In particular, repeated
transfers of the same signal between two regions causes the signal
to be encoded within the basal ganglia circuit. As a result, routing
operations can be ultimately performed in absence of the source
representation in the cortex, saving a number of intermediate
computations. The lack of need for the intermediate cortical rep-
resentations is the basis of automaticity and is consistent with the
large drops in activation that are consistently found in neuroim-
aging investigations of practice, especially in the fronto–parietal
areas that are thought to underpin central cognitive resources (see
Hill & Schneider, 2006, for a review). The next sections describe
the computational mechanisms by which the model achieves au-
tomaticity.

Hebbian Learning

All the learning that occurs in the model is due to changes in the
strength of synapses between neurons. Computationally, these
changes follow simple Hebbian rules. Hebbian algorithms are
regarded as a plausible approximation to the biological dynamics
of synaptic long-term potentiation (LTP) and long-term depression
(T. H. Brown, Kairiss, & Keenan, 1990). In Hebbian learning,
changes in synaptic weights (indicated as �wi,j) are proportional to
the product of pre- and postsynaptic activations. Many variations
of this principle have been proposed, differing in mathematical
properties such as long-term stability and convergence (Dayan &
Abbott, 2001; Gerstner & Kistler, 2002). In our model, the Heb-
bian rule was implemented as follows:

�wi,j � r�xi � �xi���xj � �xj��, (1)

where r is the learning rate and �xi� denotes neuron i’s baseline
activity. This rule states that the synapses between two neurons are

strengthened whenever their firing rates conjointly exceed or fall
below their baseline activation. A negative value of r was used for
inhibitory projections. This turns the rule into an anti-Hebbian
algorithm, which maintains the correct direction of LTP in inhib-
itory synapses.

Striatal interneurons are dealt with in a special way. As de-
scribed above, interneurons are characterized by a high baseline
activity �x�, and their firing rate decreases when significant cortical
patterns are detected (see Appendix A for the exact mathematical
implementation). To account for this asymmetry, the opposite term
�x� – x (instead of x – �x�) was used whenever it referred to striatal
interneurons.

Specialization in the Example Task

Within our model, this simple form of Hebbian learning is
sufficient by itself to capture certain features of skill acquisition,
namely, specialization and automaticity. Figure 7 illustrates the
changes in the response of SN projection neurons after a different
amount of repetitions of the task. The SN neurons belong to the
striatal subdivision that receives projections from the prefrontal
region (source) and transmits information to the vocal region
(destination). In the both panels, time flows horizontally. The left
panel details the activation of SN neurons at different levels of
practice, corresponding to 0, 3, 6, or 9 repetitions of the same trial.
Their activation reflects both the excitatory input from the cortex
and the decreased inhibition from interneurons. The right panel
reflects the contribution of striatal interneurons only, without the
cortical component. The figure shows that, with practice, the
pattern that is embedded in the synapses between interneurons and
projection neurons comes to resemble the incoming cortical input.

These changes provide a preliminary basis for the development
of automaticity. As long as the same information is available in the
striatal interneurons’ projections, the original cortical representa-
tion is not needed, and the same pattern can be used without the
need for cortical processing. This fact is consistent with the drop
in cortical activation that can be experimentally observed with
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Figure 6. Performance of the model in the general simulations. Left: Mean number of incorrect trials by
number of regions and number of competing operations. Right: Mean number of additional bindings by number
of regions and number of competing operations. Additional bindings are source–destination bindings that are
found in the model thalamic subdivision but do not belong to the desired model response.
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practice (Chein & Schneider, 2005; Hill & Schneider, 2006; Qin et
al., 2003; Raichle et al., 1994).

Dopamine and Skill Learning

This simple associative learning mechanism cannot go very far.
The modulation of dopamine in the striatum, however, can strate-
gically direct Hebbian learning, significantly increasing the mod-
el’s learning capabilities. One important way in which practice can
improve performance is by eliminating intermediate processing
steps that require cognitive control. An example of such a pro-
cessing step occurs between Stages B and C in the example task
(see Figure 5). In this step, the prefrontal region uses the auditory
stimulus as a cue to retrieve an associated response from long-term
memory. With practice, this extra step can be replaced by a
specialized routing operation that binds the initial auditory stimuli
with their associated responses. Computationally, the idea of pro-
ducing novel knowledge by creating direct stimulus–response
mappings and skipping intermediate steps has been exploited in a
number of production system learning algorithms. These algo-
rithms include powerful techniques like chunking (Laird, Rosen-
bloom, & Newell, 1986) and production compilation (Taatgen &
Lee, 2003). All these techniques have a long record of successes in
modeling human learning. Furthermore, they can be seen as ex-
amples of skill learning, which is one of the memory functions of
the basal ganglia (Packard & Knowlton, 2002). Therefore, it is
important to show that the conditional routing model possesses
similar learning capabilities.

In the model this kind of learning takes place when the basal
ganglia harvest in one cycle a representation from the same cor-
tical source (in the example, the lateral inferior prefrontal region)
that was the target destination in the previous cycle. The fact that
a region that has been recently used as a destination now figures
among the source of routed representations is an important cue that
this region has been used for some intermediate processing.

Learning to skip steps exceeds the capabilities of the simple Heb-
bian dynamics presented in the previous section. It can be accom-
plished, however, by strategically guiding the Hebbian rules. In the
model, this is accomplished by the intervention of dopamine, a neu-
rotransmitter that plays a crucial role in changing synaptic plasticity in
the striatum (Calabresi et al., 2000; Wickens, Begg, & Arbuthnott,
1996). Biologically, the striatum receives dopamine from two major
pathways, the mesolimbic pathway from the ventral tegmental area
(VTA) and the nigrostriatal originating from the SNc.

Much is known about the response of dopamine neurons to unex-
pected rewards and how their bursts closely reflect the reward pre-
diction error (Schultz, 1998, 2002). Although the routing model can,
in principle, also learn from these reward-related responses, this
article focuses on a different, practice-related form of learning. This
type of learning depends on the release of dopamine under specific
additional circumstances. In particular, we hypothesized that proce-
dural skill acquisition is mediated by a dopamine signal carried by the
nigrostriatal dopamine pathway originating in the SNc. This pathway
is essential for habit formation (Faure, Haberland, Conde, & El
Massioui, 2005) and has been previously included in other models of
the basal ganglia (e.g., Ashby et al., 2007).

The SNc receives direct projections from the striatum, as well as
indirect projection through the external pallidus and the SNr
(Haber, 2003; Haber, Fudge, & McFarland, 2000; Hajos & Green-
field, 1994). Thus, its activity can be modulated by the other nuclei
of the circuit. Among these afferents, there is evidence that the
influence of direct SN projections is rather weak. For instance, the
spontaneous activity of dopamine neurons does not change when
the SN connections are removed (Hajos & Greenfield, 1994). Both
the projections from the GPe (Hattori, Fibiger, & McGeer, 1975;
A. D. Smith & Bolam, 1990) and the SNr (Tepper, Martin, &
Anderson, 1995), on the other hand, have significant effects on the
output of dopamine neurons. The model dopamine system, whose
architecture is shown in Figure 8, is also controlled by the SNr/GPi

Figure 7. An example of Hebbian learning in the model. Left: Activation of an ensemble of striatonigral (SN)
neurons during different levels of practice in the aural–vocal task. In the panels, time flows horizontally, and the
different vertical patterns correspond to the neurons’ activations after 0, 3, 6, and 9 repetitions of the same task
with the same stimulus. Right: The relative contribution of interneurons to the overall activation. With repetition,
synapses between interneurons and SN units encode more of the transferred representation.
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and GPe projections. Dopamine projection neurons in the SNc
receive direct input from the SNr/GPi as well as from local SNc
interneurons (Hajos & Greenfield, 1994; Juraska, Wilson, &
Groves, 1970). The proposed mechanism additionally assumes that
the SNc interneurons receive projections from the GPe and that
their activations persist for a sufficient time to provide a delayed
memory of the destinations that were used in the previous transfers
(see Figure 3 and also the Discussion). This delay is crucial
because it allows the SNc dopamine neurons to directly compare
the sources of the representations that are being transferred (SNr/
GPi) with the destinations of the previous transfers (the delayed
signal from the GPe). Note that the model does not assume that the
GPe signal itself is delayed with respect to the SNr; it simply
assumes that the GPe signal can be temporarily maintained for
comparison with the subsequent patterns of activity from the SNr.
The Discussion examines other possible mechanisms that produce
the same effect. Because of this delay, when the current sources
figure among the previous destinations, the sum of inputs from the
SNr and GPe triggers an increase in dopamine output to the
striatum. This case is visually represented in Figure 8.

There are different ways of modeling the effects of dopamine.
Our model adopts a solution proposed by Ashby et al. (2007), who
captured the role of dopamine by adding a third term to the
Hebbian rule for striatal synapses. This third term reflects the
activity of dopamine neurons and expresses the biological fact that
learning in the striatum is due to the interaction of pre- and
postsynaptic neurons with dopamine (Ashby et al., 2007; Miller,
Sanghera, & German, 1981). Within our simple Hebbian frame-
work, this three-way interaction can be easily reproduced by
including the activation xd of dopamine neurons to Equation 1:

�wi,j � r�xi � �xi���xj � �xj���xd � �xd��. (2)

If we indicate (xd – �xd�) with the symbol d, we can rewrite
Equation 2 as

�wi,j � dr�xi � �xi���xj � �xj��. (3)

Equation 3 makes it apparent that increases and decreases in
dopamine modulate synaptic plasticity by increasing or decreasing the
learning rate. In fact, when dopamine falls below baseline (i.e., d �
0), the direction of learning can even be inverted. Although this
equation does not capture all the subtleties of learning in the basal
ganglia, it has the advantages of being simple and free of additional
assumptions. Therefore, dopamine effects on learning were modeled
by increasing or decreasing the learning rate term dr.

In addition to modulating the learning rate, dopamine directly
affects the activity of striatal cells. In particular, it excites SN
neurons and inhibits SP cells (Bolam et al., 2000; Nicola, Sur-
meier, & Malenka, 2000; see Figure 2). These differential effects
permit a fine modulation of the direct and indirect pathways, which
have often been included in basal ganglia models (Frank et al.,
2001; O’Reilly & Frank, 2006). Less frequently modeled, but
equally important, are the opposing effects of dopamine on
GABAergic and cholinergic interneurons (Tepper & Bolam,
2004). Our model contains one single type of interneuron that
captures properties of both. Because cholinergic interneurons also
control the fast-spiking GABAergic interneurons (see Figure 2),
their reaction to dopamine was taken as the dominant one. There-
fore, dopamine inhibits the model interneurons. Excitatory and
inhibitory effects of dopamine neurons were modeled by simply
using excitatory or inhibitory projections from SNc dopamine
neurons to striatal cells.

Skill acquisition depends on the dynamics between all these effects.
LTP in the cortico–striatal projections increases the probability of SN
neurons firing and of interneurons to deactivate in the presence of a
similar pattern of cortical activity. After repeated exposures, the
synapses between interneurons and projection neurons encoded the
transferred representation (see Figure 7); therefore, this representation
can be imposed to SN neurons even in absence of the original cortical
input from the corresponding region.

Skill Learning in the Example Task

The simple aural–vocal task described in the previous section is
useful for demonstrating these effects of learning. In the simple
model outlined above, the correct response to a tone had to be
selected from long-term memory (see Figure 5, Stages B and C).
This intermediate step can be omitted with practice. The lateral
prefrontal cortex figures as the destination of the first routing
operation (see Figure 5, top right panel) and as the source of the
second (see Figure 5, bottom right panel). Therefore, the redundant
step can be detected in the convergent pathways on the SNc
neurons. In turn, this triggers dopamine release in the striatum,
initiating the learning process described above. Figure 9 illustrates
how the model performs the task after the learning step has
happened a sufficient number of times to allow the newly learned
routing operation to fire. The figure illustrates how the new oper-
ation routes an immediate response to the vocal region when
presented with the original stimulus. Thus the model transitions
from the initial stage to the final stage in Figure 9 without the
intermediate stages in Figure 5.

It is interesting that this new operation can be fired at the same
time as the original response to the stimulus. This is shown in the
right panel of Figure 9. This panel depicts the new pattern of
thalamic activation. The new thalamic pattern includes activations
in the subdivisions that were previously found in two separate

Figure 8. A close-up of the pathways controlling dopamine release in the
SNc; inhibitory projections are marked with a “�.” Dopamine neurons
receive two concurrent inputs, one from the SNr/GPi (left) and one from
the GPe (right). This second signal is delayed by the activity of SNc
interneurons, which maintain a temporary memory of the previous state.
The sum of these two signals eventually activates dopamine neurons in the
striatal region where a processing step can be automatized. SNr � pars
reticulata of the substantia nigra; GPi � internal part of the globus pallidus;
GPe � external part of the globus pallidus; SNc � pars compacta of the
substantia nigra.
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routing operations (compare to the right panels of Figure 5). In a
way, learning had the effect of “shifting back” the original second
operation so that it can be applied in advance. The anticipation of
striatal activation is consistent with the reorganization of firing
patterns in the striatum following habit learning (Jog et al., 1999).

Note that reorganization of striatal activity did not completely
remove the transfer to prefrontal cortex. Rather, it reorganized it so
that it can occur in parallel with the speeded-up vocal response.
Since the prefrontal contribution in response selection is eventu-
ally irrelevant to the vocal response, further practice and the
establishment of cortico– cortical connectivity will eventually
eliminate it. Therefore, the model predicts that in skill acquisition
the reorganization of cortical activity follows the reorganization of
striatal activity. This prediction is consistent with the different
rates by which striatal and prefrontal cortex cells learn to respond
to stimuli with practice (Pasupathy & Miller, 2005). Correspond-
ingly, Anderson (2007) reported data showing that, with extensive
practice, task-related metabolic activity in the prefrontal region
drops to baseline levels.

This form of learning relies on the strategic release of dopamine
after the execution of the second operation. We have outlined one
possible biological mechanism by which this could happen. It
should be noted, however, that other mechanisms of dopamine
control could obtain similar results. One of these mechanisms is
the simple release of dopamine according to unpredicted rewards
(Schultz, 1998, 2002). Thus, an increase of the d term after the
second operation can also be triggered by the initial reward gen-
erated by succeeding in the task.

Time Course of Striatal and Dopamine Activity

The learning dynamics that arise in the model can be used to
explain some contrasting findings in the literature. Certain lesions
in the basal ganglia have been found to disrupt the execution of

highly practiced tasks, suggesting that the basal ganglia serve as
the ultimate repository of skills and habits. Other studies, however,
have found that basal ganglia lesions do not affect highly trained
skills, suggesting that the basal ganglia are required for acquiring
skills but do not constitute their ultimate repository (e.g., Hiko-
saka, Rand, Miyachi, & Miyashita, 1995; Miyachi, Hikosaka,
Miyashita, Karadi, & Rand, 1997; Packard & McGaugh, 1996). A
similar paradox arises in single-cell recordings, where some stud-
ies have found that striatal activity increases while habits are being
acquired (e.g., Jog et al., 1999), whereas others have found the
opposite pattern (e.g., Carelli, Wolske, & West, 1997).

One way to reconcile these results is assuming that the transition
from a novel to a practiced task occurs in two steps. During an
initial learning phase, a skill is temporarily encoded within the
basal ganglia. With time, however, the skill can be encoded in the
cortico–cortical pathways and no longer relies on the basal gan-
glia. This is consistent with the popular view that the basal ganglia
“train” the cortex (Graybiel, 2005; Pasupathy & Miller, 2005).
According to this view, an increase in basal ganglia activity should
be expected during the first stage, as a result of the circuit encoding
more information. A decrease, however, can be expected in the
second stage, as a result of information being progressively trans-
ferred to the cortex. This pattern has been confirmed in a neuro-
imaging study of procedural learning (Hubert et al., 2007).

An example of the decrease of basal ganglia involvement with
practice is provided by Ashby et al. (2007). Their results rely on
the decay of synaptic strengths in cortico–striatal cells when do-
pamine ceases to be released, which occurs when transmission
along cortico–cortical pathways happens faster than through the
basal ganglia loops. Although their model can provide insights into
this second step of proceduralization, our model can provide
insights into the first. In particular, the anticipated activation of SN
projection neurons (as illustrated in Figure 9) can provide the

0 20 40 60 80 100

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Cortex, Initial Stage

Cortical units

Aural
Prefrontal
Vocal

● ● ● ● ● ● ● ● ● ● ●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●● ●●●● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Thalamus
Skilled Operation

Aural Prefrontal Vocal

From Aural
From Prefrontal

From Vocal

0 20 40 60 80 100

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●●● ●●●●●●●●●●●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Cortex, Final Stage

Cortical units

Aural
Prefrontal
Vocal

Figure 9. Model performance in the example task, after dopamine-mediated learning has occurred. Synaptic
plasticity in the striatum resulted in anticipated activation of the thalamic sector in response to the presentation
of the auditory stimulus. Activation in this sector was previously triggered by a vocal response retrieved in the
second region. As a consequence, a response is transmitted to third cortical region (vocal) at the same time the
cue is routed to the second region (retrieval).
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neural basis for the metabolic increase of activation during the
establishment of habits.

To investigate this possibility we ran a new series of simula-
tions. During these simulations, the model performed the aural–
vocal task until its performance moved from the original two-
operation procedure (as illustrated in Figure 5) to the skilled
procedure (as illustrated in Figure 9). The sum of activity across all
the model striatal projection neurons was recorded at the very
beginning and the very end of the learning phase. To prevent
further practice from contaminating the results, Hebbian learning
was disabled in those trials where striatal activation was recorded.
The light gray line in Figure 10 plots the average amount of striatal
activity against the experience with the task. The values in the
figure have been normalized, using the average amount in the
novel (i.e., initial and unskilled) condition as a baseline. The figure
also plots the change of dopamine release with practice (dark gray
line). This quantity was estimated by summing up the activation
values of all the SNc dopamine neurons. Because the initial,
unskilled execution of the task triggers dopamine release, the
baseline for this parameter was taken from the skilled condition. It
is clear that in the transition from novel to skilled behavior,
dopamine follows a pattern that is opposite to that of striatal
activity, eventually returning to the baseline level with practice.

Summary

This section has illustrated the learning capabilities of the
model. In particular, it has shown how the model, with practice,
can encode internally certain representations that were originally
routed from the cortex. This accounts for the proceduralization and
the specialization of responses. It was accomplished by means of
simple Hebbian learning, which is a biologically plausible learning
rule. When coupled with the effects of dopamine, the Hebbian rule
triggers more complex dynamics. Eventually, these dynamics en-
able the acquisition of new skills that skip intermediate steps in
series of information transfers. The elimination of redundant steps

during the learning phase accounts for practice speedup and auto-
maticity. Finally, the time course of striatal activity is consistent
with important established results in the field of habit learning.

Detecting the appropriate conditions for dopamine release re-
quires a comparison of the current sources and the previous des-
tinations in the SNc. In turn, this requires maintaining a delayed
version of the previous destinations in the SNc interneurons.
Although this account is partially speculative, many other models
have adopted and defended similar mechanisms that compare the
current signals from the direct pathway with a delayed signal from
the indirect pathway (e.g., Barto, 1995; see Joel et al., 2002, for a
review). It should also be noted that similar results could be
accomplished by other mechanisms that regulate dopamine re-
lease. For instance, reward-related changes in dopamine also fol-
low a pattern similar to that in Figure 10, with dopamine decreas-
ing as a task becomes more practiced and rewards become
predictable (Schultz, 1998, 2002).

Parkinson’s and Huntington’s Diseases

A computational model of the basal ganglia should address the
two signature disorders of the circuit: Parkinson’s and Hunting-
ton’s diseases. Both pathologies compromise the functionality of
the basal ganglia circuit but have different causes and are associ-
ated with different symptoms. This section addresses them sepa-
rately.

Parkinson’s Disease

Parkinson’s disease is caused by the death of dopaminergic
neurons in the SNc, which drastically reduces the dopamine supply
to the striatum (see Jankovic, 2008, for a review). The four
cardinal symptoms of this disease are tremor, rigidity, postural
problems, and inability to initiate voluntary movements (akinesia),
which eventually leads to paralysis (Jankovic, 2008).

As previously mentioned, SN and SP projection neurons express
different types of dopamine receptors. Under normal circum-
stances, dopamine excites the SN cells but inhibits SP neurons
(Gerfen et al., 1990; Nicola et al., 2000; see Figure 2). A decrease
in striatal dopamine, therefore, has a net excitatory effect on SP
neurons (because of the decreased inhibition) and a net inhibitory
effect on SN cells (because of the decreased excitatory input). SN
and SP neurons originate the direct and indirect pathways, respec-
tively. This consideration underlies the development of the classic
view of the basal ganglia (Albin et al., 1989; DeLong, 1990).
According to this view, the output of the basal ganglia depends on
the balance between the direct pathway, which disinhibits motor
programs, and the indirect pathway, which inhibits them by excit-
ing the output nuclei. Within this brake–accelerator (Graybiel,
2000) framework, the symptoms of Parkinson’s disease can be
explained as an imbalance between a pathologically weak direct
pathway and an abnormally strong indirect pathway (Albin et al.,
1989). We have argued above that our conditional routing model
can be seen as a generalization of the brake–accelerator view of the
basal ganglia. Therefore, it is important to show that it can provide
an explanation for the same phenomena the classic framework was
designed to explain.
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Figure 10. Relative increase of mean projection neuron activation (light
gray line and circles) and corresponding decrease of dopamine neuron
activation (dark gray line and circles) as the model transitions from novel
to skilled performance in the aural–vocal task. SN � striatonigral; SP �
striatopallidal; SNc � pars compacta of the substantia nigra.
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Simulation

Because dopaminergic neurons are explicitly modeled in the
SNc, a straightforward way to mimic this pathology is to
simulate damage to these units. A decrease in dopamine, there-
fore, can be modeled as increase in the input of SN units, and
a corresponding decrease in the input of SP cells. In the model,
this translates into stronger inhibition of possible destinations
and weaker encoding of source representations. This reduction
has two important consequences. The first one is that the proper
source is not strongly propagated along the direct pathway and
the proper destination is still somewhat inhibited by the indirect
pathway. Figure 11 illustrates such a case. In the figure, the top
image represents the pattern of activation in the thalamic sub-
divisions when an operation is executed under normal condi-
tions. It can be seen that only one subdivision contains active
cells. When dopamine is lowered, activity of these cells is
reduced because of the imbalance between the two pathways.
This can be observed in the left middle panel of Figure 11. The
bottom left panel represents the landscape of thalamic activa-
tion when dopamine has been drastically lowered and the same

operation is attempted. In this example, the net input to the
thalamic output falls below the activation threshold, blocking
the delivery of signals to the cortex. If the transferred pattern
represents a specific motor command (like in the final stage of
the example task; see Figure 5), then the model remains frozen
in a condition resembling akinesia, unable to initiate a proper
movement.

A dysfunction of the routing mechanism is not limited to motor
programs; it extends to other regions, causing a wide range of
nonmotor impairments that depend on the functions of the desti-
nation cortical regions. This is consistent with the existence of
widespread cognitive deficits even at the early stages of the disease
(Levin, Llabre, & Weiner, 1989). Given the fact that basal ganglia
projections mainly target the frontal lobe, a relationship between
Parkinson’s disease and executive function disorders is expected
and has been reported in neuropsychological studies (Muslimovic,
Post, Speelman, & Schmand, 2005; Owen, 2004).

In the model, the disruption of dopaminergic input to the stria-
tum has a second, important consequence. Dopamine depletion
prevents the acquisition of new skills, which crucially rely on the

Figure 11. An illustration of how the model simulates Parkinson’s and Huntington’s diseases. Left: Parkin-
son’s disease was simulated by lowering the amount of dopamine input to striatal projection neurons. As the
amount of dopamine decreases, the thalamic output to the cortex becomes increasingly weaker. Right:
Huntington’s disease was simulated by randomly disabling striatopallidal (SP) neurons in the striatum. As a
consequence, damaged representations are misrouted to other destination regions.
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modulation of dopamine release to a target striatal compartment.
Several studies have documented a specific inability of Parkin-
son’s patients to acquire new skills (Jackson et al., 1995; Knowlton
et al., 1996). Neuroimaging studies have provided further insight
into this impairment. For example, Dagher et al. (2001) compared
the brain activity patterns of healthy controls and mildly affected
patients solving a set of problems with the Tower of London
puzzle, a task designed to assess planning capabilities (Shallice,
1982). Participants were chosen so that the two groups had com-
parable behavioral performance. Compared to controls, patients
exhibited less activity in the caudate nucleus but increased activity
in the hippocampus. This suggests that Parkinson’s patients were
compensating for their inability to learn new procedures by relying
on previously acquired memories of task states (Dagher et al.,
2001).

Huntington’s Disease

Huntington’s disease is a genetic progressive neurodegenerative
disorder. The responsible gene causes the death of striatal neurons,
although the precise cellular mechanisms by which this happens
are still poorly understood (Walker, 2007). The disease does not
target all striatal cells equally. SP neurons are the most vulnerable,
whereas SN cells and interneurons are less involved (Albin et al.,
1992; Glass, Dragunow, & Faull, 2000; Reiner et al., 1988). The
most obvious physical symptoms consist of jerky, disordered, and
uncontrolled movements and tics, collectively known as chorea
(Walker, 2007).

Early motor symptoms of Huntington’s disease are opposite and
complementary to those of Parkinson’s disease. This was one of
the observations that guided the brake–accelerator view of the
basal ganglia, where the direct and indirect pathways exert oppo-
site and complementary effects on the basal ganglia output nuclei.
According to this view, Huntington’s disease originates from an
abnormal weakness of the indirect pathway, which fails to inhibit
unsolicited motor or cognitive behaviors (Albin et al., 1989).

Simulation

Huntington’s disease was simulated by randomly disabling SP
cells in the model striatum. This decreases the inhibitory strength
of the indirect pathway, the most obvious consequence of which is
that transferred contents are misrouted. The bottom right image in
Figure 11 illustrates such an example. In the figure, the same
operation is performed that was previously used to test normal and
Parkinson’s conditions, only this time a number of SP neurons
have been eliminated. As a result, impoverished representations
are now mistakenly broadcast to different destination regions. This
excess of activation provides a basis for involuntary and uncon-
trolled movements, whereas the degradation of transmitted pat-
terns accounts for the deterioration of fine cognitive and motor
abilities.

As in the case of Parkinson’s disease, this impasse of the circuit
is general and not limited to the delivery of motor programs.
Correspondingly, Huntington’s patients are affected by a number
of cognitive as well as motor impairments. Many of the compro-
mised cognitive abilities (e.g., planning, working memory, and set
shifting) are related to the functions of the frontal lobes, which are

in fact the main target of basal ganglia projections (see Lawrence,
Sahakian, & Robbins, 1998).

In addition to a difference in their motor symptoms, the model
also predicts that Parkinson and Huntington’s patients should
differ in the domain of skill learning. Parkinson’s disease is caused
by the death of cells in the SNc that, according to the model, are
responsible for triggering the learning signal. In the case of Hun-
tington’s, however, SNc cells are spared and the learning mecha-
nism should be intact and available. This potential dissociation is
counterbalanced by two factors. First, part of the skill acquisition
process consists of the striatum learning specific patterns that were
previously available in the cortex. In Huntington’s patients, the
striatum itself is compromised, and the extent of its damage
constrains its ability to internalize and reproduce proper cortical
representations. Second, skill acquisition only proceeds from an
initial stage where task-relevant information is properly repre-
sented in the cortical regions (as in the simplified initial stage of
the example task; see Figure 5), but the delivery of proper repre-
sentations to the appropriate cortical regions is also affected in the
case of striatal damage. Given these considerations, one should not
expect more than a difference in degrees between the learning
capabilities in the two conditions. Indeed, some experimental
findings indicate that although Huntington’s patients do exhibit
skill-learning impairments, their deficits are less severe than in the
case of Parkinson’s (Sprengelmeyer, Canavan, Lange, &
Homberg, 1995). This finding is even more remarkable when one
considers that the cognitive effects of the former are more severe
and impairing than those of the latter.

Discussion

This article described a novel model of the basal ganglia, ac-
cording to which the basal ganglia control the routing of informa-
tion between cortical areas. The transfer is made possible by
assuming that the basal ganglia operate by binding pairs of source
and destination regions. This is made possible by the fact that the
basal ganglia maintain and reflect some features of cortical topol-
ogy. The outlined mechanism is general because it allows actions
to be uniformly represented as source–destination bindings across
different domains. It is also flexible in that it allows the basal
ganglia to dynamically change the way information flows between
cortical regions. Finally, the model describes a possible mecha-
nism by which dopamine interacts with striatal neurons to enable
skill acquisition. This mechanism is based on simple Hebbian
learning rules and accounts for the development of new source–
destination bindings and automaticity.

By deciding which information is transferred to and processed
by the appropriate cortical region, the basal ganglia can articulate
the ongoing processing activities of the brain in an ordered se-
quence. Such a function does not constitute a complete character-
ization of the role of the basal ganglia in human cognition. How-
ever, it is general enough to explain a number of cognitive
contributions of the basal ganglia, especially in memory and higher
level cognition. Furthermore, the hypothesized function emerges
naturally from the structure of the circuit. Importantly, the model
shows how the basal ganglia, by flexibly routing information,
provide a neural instantiation for the computational power of a
production system.
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Relationship to Basal Ganglia Physiology

Our model stresses the importance of striatal interneurons,
which have been neglected in previous modeling attempts (e.g.,
Ashby et al., 2005, 2007; Frank et al., 2001). In the model, they
play a significant role in learning and in regulating the activity of
projection neurons.

The routing model relies on the assumption that certain nuclei of
the circuit, including the striatal matrix, GPe, SNr/GPi, and tha-
lamic relay nuclei, have a two-level organization, which reflects
topology of the cortical regions and their cortico–cortical projec-
tions. This organization has been visualized like a source–
destination matrix in Figures 3, 4, 5, 8, 9, and 11. This organization
is incompatible with the view of the basal ganglia as forming
parallel closed loops that connect a frontal area to itself (e.g.,
Alexander et al., 1986). However, many authors have recently
argued that the basal ganglia also form open loops (Joel & Weiner,
1994). It has been reported that striatum neurons receive projec-
tions from different connected areas (Parthasarathy et al., 1992)
and that the thalamic relay nuclei of the basal ganglia form both
reciprocal as well as nonreciprocal connections (McFarland &
Haber, 2002).

In our model, closed loops represent a special case where source
and destination coincide (i.e., regions along the diagonal in Figure
3). Because the focus of the article was on the transfer of infor-
mation, they do not play a significant role in the simulations, and
ensembles of cells belonging to closed loops have been grayed out
in Figure 3. However, closed loops might play an important role in
the biological circuit. In fact, they might even recruit larger neu-
ronal ensembles than the open loops where source and destination
differ. In any case, our model can accommodate the existence of
closed loops without losing its functions and generality.

The Basal Ganglia and the Cortex

Central to the routing model is the idea that subcortical connec-
tions are capable of determining the state of cortical regions. The
overwhelming majority of cortical afferents, however, are repre-
sented by cortico–cortical connections (Braitenberg & Schüz,
1991). This asymmetry can be reconciled with our model only if
subcortical afferents are strong enough to affect the states of
cortical neurons. In the case of thalamic connections, it has been
shown that they are capable of driving the activity of cortical areas,
even in the absence of cortical amplification of the signal (Bruno
& Sakmann, 2006). As for the specific basal ganglia–thalamo–
cortical connections, an indirect confirmation of their importance
comes from investigations of cortical synchronization (as mea-
sured by functional connectivity between cortical regions) in Par-
kinson’s disease. Two independent studies have shown that, as the
disease progresses and basal ganglia function become more im-
paired, the synchronization between cortical regions increases
(Moazami-Goudarzi, Sarnthein, Michels, Moukhtieva, & Jean-
monod, 2008; Stoffers et al., 2008). This suggests that, in normal
conditions, the basal ganglia interfere with the spontaneous rever-
berations of signals across cortical regions. This hypothesis is
consistent with their proposed role in transferring and superimpos-
ing specific representations onto the target regions of the cortex.

It is well known that the basal ganglia receive projections from
all of the neocortex but project back almost exclusively to the

frontal areas. Such an asymmetry may seem problematic in light of
the proposed information-routing function, because it implies that
most source areas are not possible destinations. One possibility is
that this uneven organization of the basal ganglia projections
results from the functional organization of the brain. In particular,
this organization might reflect the large-scale differences in func-
tional roles of brain regions, with the frontal parts more engaged in
controlling behavior by holding task-specific representations and
the posterior parts predominantly engaged in processing or repre-
senting sensory and perceptual information. Assuming this distinc-
tion, it seems rational that the basal ganglia, although gathering
information from all cortical regions, feed the selected signals to
the prefrontal cortex in order to avoid interference with ongoing
posterior processing of sensory information. In fact, Atallah,
Frank, and O’Reilly (2004) have previously argued for an archi-
tectural partition of the brain based on the functional macro-
organization of the cortex and its ensuing computational tradeoffs,
in which the basal ganglia and the prefrontal cortex form a joint
subsystem.

Current Limitations

The routing model depends on a number of assumptions about
the basal ganglia physiology. The most problematic are perhaps
the assumptions that underlie the dopamine-mediated skill-
learning mechanism. Many authors (e.g., Frank & Claus, 2006)
have considered the dopamine signal as a uniform learning signal
that is best represented by a simple scalar quantity. Other models,
however, do make use of a spatially differentiated dopamine signal
(e.g., Frank et al., 2001; O’Reilly & Frank, 2006). In our model
this signal is also spatially differentiated, and it is represented as
vector of values that can be different for different subdivisions of
the striatum (see Figure 8). The nigrostriatal connections are, in
fact, organized into modules corresponding to different striatal
subdivisions (e.g., Haber, 2003; Haber et al., 2000). This organi-
zation makes sense only when the dopamine input can vary be-
tween different striatal subdivisions. Also, most studies of dopa-
mine modulation investigate the effects of rewards, not of practice.
The skill-learning mechanism predicts that the dopamine signal
needs to be inhomogeneous only for practice-related changes.

A related issue concerns the role of SNc interneurons in main-
taining the signal corresponding to the previous destinations. We
have no direct evidence to support the specific mechanism imple-
mented in the model, but there are other possible mechanisms that
can achieve the same function. For instance, the inhibitory signal
from the GPe could be maintained longer on a dopamine cell
because of the longer activity of its specific neurotransmitter (e.g.,
Tepper et al., 1995).

In both the example task and the general performance simula-
tions, the model was trained to perform a number of initial routing
operations. The training procedure used the CHL algorithm, which
requires only local computations. The use of a special algorithm
was required to provide the model with an initial set of actions. An
initial set is required because the model’s internal learning algo-
rithm is based on practice and can proceed only from operations
that the model already knows to execute. The model itself is
agnostic on how this initial set is acquired. Two different possi-
bilities can be suggested. First, an initial set of actions can be
acquired by means of reward-related learning. This form of learn-
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ing is obviously associated with the dopamine signal and has been
previously integrated within gating models of the basal ganglia
(Frank & Claus, 2006; O’Reilly & Frank, 2006). There is no
incompatibility between a reward-based learning mechanism and
our model’s skill acquisition procedure. The two learning systems
are, in fact, complementary. This is also the reason why we
adopted the CHL algorithm as a default training procedure (see
Appendix B for a discussion of the relationship between CHL and
reward signals).

A second possibility is that an initial set of task-specific actions
can be learned from the explicit representations of task rules that
participants can hold in working memory. For instance, in the
example aural–vocal task, participants might be initially rehearsing
the actions they have to perform as a way to guide their perfor-
mance of the novel task step by step. Consciously following these
rules for a short period of time would result in acquiring task-
specific rules that directly reflect the rule steps. This is another
form of skill acquisition, and therefore it is within the reach of our
model’s learning capabilities. In fact, similar mechanisms that
essentially interpret an internal task representation have been used
to model the acquisition of procedural skills from instructions in
production systems (e.g., Taatgen, 2005).

Relationship to Other Models

The routing model belongs to a recent strain of models that
describe how the basal ganglia select and gate information from
the cortex (Amos, 2000; Frank et al., 2001; Gurney et al., 2001;
O’Reilly & Frank, 2006). A different tradition of models has
concentrated on the role of the basal ganglia in maintaining (in-
stead of updating) working memory (Ashby et al., 2005; Monchi et
al., 2000). In our model, maintaining a piece of information in
working memory can be seen as a special case of routing where
source and destination coincide. Therefore, the routing model
illustrates how working memory update and maintenance are not
opposite functions of the basal ganglia but rather can be accounted
for within a single framework.

The model uses the routing framework to account for the ac-
quisition of skills. In particular, the model proposes that skills are
acquired by temporarily encoding cortical representations within
the synaptic patterns of the striatum. This particular form of
learning has been seldom investigated before in biological model
of the basal ganglia. Notably, Ashby et al. (2007) have proposed a
model of categorization that relies on very similar principles. Their
model, however, proposes that acquired skills are directly and
permanently encoded in cortico–cortical representation. We pro-
pose that, in an earlier step during skill learning, intermediate
representations are temporarily stored in the striatum. Within this
framework, the routing model can be seen as a detailed specifica-
tion of the first stage in a dual-step process, whereas Ashby et al.’s
focuses on the second stage.

Many other models have dealt with a different form of learning
in the basal ganglia, that is, learning that is driven by reward
(Barto, 1995; Houk et al., 1995; O’Reilly & Frank, 2006; Suri &
Schultz, 1998, 1999). This form of learning differs from skill
acquisition in that it is driven by reward instead of practice and
does not imply the development of automaticity. Also, reward-
based learning is typically modeled as being modulated by the
patch compartment of the striatum (Barto, 1995; Houk et al., 1995;

see also Joel et al., 2002), whereas the routing model focuses on
the matrix compartment.

The routing model can be characterized in a way that is very
similar to a production system. This fact is important for two
reasons. First, it establishes a bridge between biologically inspired
models of the brain and a common high-level characterization of
cognition. Second, it provides a way to capture the functions of the
basal ganglia with a formalism that is well known and widely
adopted in the cognitive science community, providing a new link
between structural properties of the brain and their functional
characterizations in terms of computation.
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Appendix A

Model Specification

This appendix gives an overview of the model’s different types
of units, their connections, and functions.

Model Neurons

In the model, neurons were implemented as simple computa-
tional units that apply an activation function f over an input value
	 to yield an activation value, denoted by x. The input value 	 is
simply the sum of all the activations coming from the projecting
neurons, weighted by the corresponding synaptic strengths:

	 � 
 jwj xj,

where wj is the value (or synaptic weight) of the synapse from
neuron j, and xj is the activation of neuron j. This is perhaps the
simplest and most common representation for artificial neurons,
and it is widely adopted in many biological models (see O’Reilly
& Munakata, 2000; Rolls & Treves, 1998).

The activation value x is obtained from the net input 	 by
applying the activation function f:

x � f�	 � � �,

where � is the neuron’s threshold, which can be thought of an initial
resistance of every neuron to be excited. A negative threshold (so that
the quantity 	 – � is positive in absence of direct stimulation) can be
used to model neurons with high baseline activities, or to compensate
for the effects of convergent inhibitory projections. The activation
value x is supposed to be the computational counterpart of a neuron’s
firing rate. Note that a neuron’s dynamic is completely characterized
by its activation function and threshold.

With the exception of striatal interneurons (discussed below), all
the neurons in the model use the hyperbolic tangent as their
activation function:

x � tanh��	 � ����,

where � is the gain parameter that determines the curves’ steep-
ness, and the [x]� notation indicates that negative values of x are
treated as zeroes. This ensures that the output of the function is in
the range [0, 1]. Together with the sigmoid function, the hyper-
bolic tangent is among the simplest formulae that fit the change of
spiking rates following changes in membrane potential in biolog-
ical neurons; the curve also closely mimics the variation of spike
rates to a change in the membrane potentials in biological neurons
(see O’Reilly & Munakata, 2000). Table A1 details the values of
� and � for each type of neuron in the model. Figure A1 gives a
visual rendition of the corresponding activation curves.

Special Activation Function for Striatal Interneurons

Striatal interneurons exhibit special dynamics. They are toni-
cally active and exert inhibitory pressure on striatal projection
neurons, unless cortical activation reduces their firing rates. This
behavior is likely produced by the interaction between cholinergic
and GABAergic interneurons (e.g., Tepper & Bolam, 2004; see
Figure 2). To account for this behavior, the only type of striatal
interneurons in our model were provided with a special activation
function, consisting of a sigmoid function with positive exponent.
This function is monotonically decreasing, so that increased cor-
tical inputs decrease the activity of interneurons. The function and
its parameters are reported in Table A1 and visually depicted in
Figure A1.

Baseline Activation Values

Each neuron also has an associated quantity called baseline
activation value, which is indicated as �x�. The baseline can be
interpreted as the neuron’s tonic activity. The baseline value pro-
vides a simple means to measure how much of a certain neuron’s
activation is due to its current inputs. It plays an important role in
the Hebbian learning rule that is used in the model:

�wi,j � r�xi � �xi���xj � �xj��.
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In this rule, subtracting the baseline from the activation prevents
two neurons from becoming strongly associated when their activ-
ity is due to their “usual,” tonic condition. It also makes it possible
for a synapse to lose strength, whenever activation in one neuron
is coupled with a decrease of activation in the other. The baselines
for each different neuron type were calculated as their activation
values in absence of stimulation, that is, when 	 � 0.

“Up” and “Down” States in Striatal Projection
Neurons

Projection neurons in the striatum have special dynamics. They
cannot be excited while they are in the “down” state. Cortical
activity puts them in an “up” state; when in “up” state, an increase
in excitatory input or a decrease of inhibition triggers a response
(Bolam et al., 2000; Wilson, 1993). A realistically complex model

of this behavior was beyond the scope of our research. A simple
approximation, however, consists of using neurons with a dynamic
threshold. A threshold value � is said to be dynamic when it is
allowed to change over time. Some learning rules that have found
biological support, such as the BCM rule (Bienenstock, Cooper, &
Munro, 1982) make use of dynamic thresholds. In the model, the
dynamic threshold �p for a projection neuron p approximates the
expected input from striatal interneurons when cortical patterns are
being gated. That is, the threshold is adapted to match the amount
of inhibition that a projection neuron receives from interneurons
when the projection neuron is nonetheless firing:

�p � 
iwp,i xi
�,

where xi
� indicates the average activation of interneuron i when

cortical signals are allowed to pass. This value depends on the
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Figure A1. A visual rendition of the different activation functions used in the model. Left: The monotonically
decreasing function used to simulate the firing rate patterns of striatal interneurons. Right: The monotonically
increasing functions used to simulate the firing patterns of all the other neurons. GPe � external part of the
globus pallidus; STN � subthalamic nucleus; SN � striatonigral; SP � striatopallidal; SNc � pars compacta of
the substantia nigra.

(Appendices continue)

Table A1
Summary of the Equations and Parameters That Govern Each Type of Neuron’s Response

Neuron type Activation function Gain parameter Threshold

Striatal interneuron x � 1/[1 � e�(	��)] � � 8.0 � � 1/2
Striatal projection neuron (SN/SP) � � 2.0 �p � �iwp,i xi

�a

Thalamic neuron � � 2.0 � � �1
SNr/GPi neurons � � 2.0 � � �2
STN neurons x � tanh[�(	 � �)�] � � 3.0 � � �1
GPe neuron � � 3.5 � � �1
SNc interneuron � � 2.0 � � �1
SNc dopamine neuron � � 2.0 � � �1

Note. SN � striatonigral; SP � striatopallidal; SNr � pars reticulata of the substantia nigra; GPi � internal
part of the globus pallidus; STN � subthalamic nucleus; GPe � external part of the substantia nigra; SNc � pars
compacta of the substantia nigra.
a Striatal projection neurons’ thresholds were dynamically recalculated to match interneuron inhibition when
cortical representations were transferred.
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routing patterns encoded in the model, and was therefore calcu-
lated separately for each set of simulations. Note that the values of
�p are dynamic because they depend on the strength of synapses
wp,i. Therefore, they are recalculated every time the synaptic
weights are changed by Hebbian learning.

A model projection neuron’s activation remains constant and
equal to zero until the sum of all its inputs stays below �p. This
corresponds to the “down” state. When the interneuron inhibition
matches the threshold, the neuron reaches the “up” state, and any
additional input, from either the cortex or interneurons, increases
its activation.

More on Synapses

Inhibitory synapses were encoded as negative weights, and
excitatory synapses were encoded as positive weights. Although
the value of the synaptic change was left free to change according
to Hebbian learning, no synapse could ever change sign. That is,
negative synapses could not rise above zero, and positive synapses
could not decrease below zero. This reflects the biological fact that
inhibitory synapses cannot turn excitatory, and vice versa. The
only exception to this rule consists of the synapses between cor-
tical neurons and striatal interneurons. The reason for this excep-
tion is that striatal interneurons represent the net contribution of
GABAergic and cholinergic interneurons.

Receptive Fields and Representation Compression

Nuclei in the basal ganglia have increasingly smaller sizes,
which suggests a progressive funneling of information (Alexander
et al., 1986). This is an important characteristic of the basal ganglia

physiology and needs to be addressed in a realistic model of the
circuit. The easiest way to model this compression of information
is to arrange the synaptic inputs so that a neuron from a smaller
region receives inputs from many neurons that occupy the same
position in a larger, input nucleus. Let us suppose that the project-
ing region has m neuron, and its target region contains n neurons
(with n � m). If we indicate with j a neuron in the projecting
region, and with i a neuron in the target region, then the synaptic
weight wi,j is given by

wi,j � Gi � j � �n/m�, ��,

where G(x, �) is a Gaussian (normal) function with mean 0 and
standard deviation �. In the expression, the term n/m is used to
express the position of the neuron j within a range between 0 and n.
This way, the relative positions of neurons i and j in the two regions
can be compared. The term i � j � (n/m) can be read as the
difference between the two relative positions. When this difference
is zero, j is at the center of i’s receptive field.

Figure A2 illustrates the shape of such receptive field in the case
of projections from the cortex (m � 100) to the striatum (n � 10;
this m/n ratio is actually close to the real ratio of cortical projection
neurons to striatal projection neurons, as estimated by Zheng &
Wilson, 2002). In the model, similar functions are used to model
connections between all nuclei, which usually differ in size. Notice
that synaptic weights depend only on m and n and the free
parameter �. In the model, � � 1/2 across all projections. The only
exception was the striatal projections from interneurons to output
neurons, where � � n/2. This created an almost uniform inhibitory
pressure.
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Figure A2. A visual rendition of the Gaussian striatal receptive fields used in the model. In this figure, 10
striatal units receive inputs from 100 cortical units. Their receptive fields are shown as bell curves of different
shades of gray. They are shaped in such a way that each striatal unit is maximally sensitive to those cortical
neurons that occupy a similar position in the cortical regions. This way, cortical topology is maintained within
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Appendix B

Learning Algorithm

This article focuses on habit learning, that is, practice-related
changes occurring by repeated execution of routing operations. For
this form of learning to occur, the model needs to be have already
learned a preliminary number of routing operations. This appendix
describes the supervised learning procedure that was used to learn
these initial operations. The preliminary learning of routing oper-
ations occurs in two sites: (a) the projections from cortical neurons
to striatal interneurons, and (b) the inhibitory projections between
striatal interneurons and striatal projection neurons. These projec-
tions occur within a simple three-layer network, which is illus-
trated in Figure B1.

Several algorithms exist to develop learning in a three-layered
network. Perhaps the most famous is backpropagation, which
consists of propagating backward the vector of differences be-
tween each output layer neuron’s target and actual value (Rumel-
hart, Hinton, & Williams, 1986). This algorithm, however, is
implausible, as it depends on computations that are nonlocal and
require signals to propagate back from the dendrite through the
axon. The same computations can be achieved by a Hebbian-like
rule known as contrastive Hebbian learning (CHL; Dayan &
Abbott, 2001; Rolls & Treves, 1998). The CHL rule is defined as
follows:

�wi,j � r�xjti � xjxi� � rxj�ti � xi�, (B1)

where xi represents the actual activation of neuron i and ti repre-
sents its desired (target) value. This rule is biologically admissible
in that it requires only local computations between pairs of neu-
rons. Variations of the CHL algorithm have also been used as the
basis for reward-based learning in other models of the basal
ganglia (e.g., Frank et al., 2001; O’Reilly & Frank, 2006). It can be

seen that the rule consists of two Hebbian steps: an anti-Hebbian
update between the presynaptic activation xj and postsynaptic
activation xi, and a Hebbian update between the presynaptic acti-
vation xj and the postsynpatic target ti.

Although Equation B1 can be applied only on two-layer net-
works, the CHL algorithm can be generalized to multilayer net-
work, where it performs comparably to the backpropagation algo-
rithm (O’Reilly, 1996; Xie & Seung, 2003). However, the
generalization requires bidirectional connections between the con-
secutive layers of a network; certain variants (e.g., Xie & Seung,
2003) even require these connections to be symmetrical. These
requirements do not hold in our three-layered cortico–striatal net-
work.

To perform the initial training of the network, the CHL algo-
rithm was broken in two steps and was performed separately for
the cortico–striatal and the striato–striatal projections (see Figure
B1). For the cortico–striatal projections, the exact procedure was
the following:

1. An initial random state was generated for the striatal
interneurons by setting a number of k different striatal
interneurons to zero and letting all the others go to their
baseline levels. This was designated as the desired state t
for striatal interneurons.

2. The activation values of cortical neurons were then clamped
to the cortical pattern the model should respond to.

3. The activation values xi of striatal interneurons are cal-
culated, and the anti-Hebbian term –xjxi is calculated.

4. The activation values of interneurons are clamped to the
desired state ti.

5. The Hebbian term xjti is calculated, and each cortico–striatal
synapse is then updated according to Equation B1.

For the striato–striatal projection, the procedure was the following:

1. The desired target state t of striatal projection neurons
was generated by setting all their activation values to a
negative number. If a neuron belongs to an ensemble
corresponding to a desired source–destination binding,
its value is set to a small positive number.

2. The activation values of striatal interneurons are clamped to
their target state, as calculated in the previous procedure.

3. The activation values of striatal projection neuron are
calculated, and the anti-Hebbian term –xjxi is calculated.

(Appendices continue)

Figure B1. The three-layer network that was trained for the initial
learning of routing operations. SP � striatopallidal; SN � striatonigral.
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4. The activation value of projection neurons are clamped to
their desired state.

5. The Hebbian term –xjti is calculated, and each cortico–
striatal synapse is then updated according to Equation B1.

This process was repeated until the network error E between the
desired and actual striatal outputs was smaller than a criterion
value: E � .001. The error was calculated as:

E � 
i�xi � ti�
2.

Contrastive Hebbian Learning and Reward

Although the CHL is plausible in that it requires only local
computations, it still is a supervised learning procedure because it
requires a detailed representation of the desired output for each
neuron (the value ti). In contrast, the simple error signal conveyed
by dopamine neurons is thought to reflect a basic scalar value (e.g.,
Schultz, 1998, 2002). However, this rule can be thought of as
approximation of unsupervised simple error-driven learning,
which can be triggered by dopamine release. To see how this is
possible, we need to rewrite Equation B1 in this form:

�wi,j � rxjti � rxjxi. (B2)

Equation B2 makes it clear that CHL is just the combination of
two standard Hebbian updates: a Hebbian increment when the
output of striatal interneurons equals ti and an anti-Hebbian update
when it equals any other possible value xi.

As outlined in the article, Hebbian learning is actually a three-
term interaction between these neurons and dopamine release,
which we can simply write as an additional term d.

�wi,j � dx�trxjxi � dx�trxjxi, (B3)

where dx�t is the dopamine release when the value is the target
value, and dx�t is the dopamine when the interneuron activation is
off the target. It is easy to see that this equation reduces to CHL
when dx�t � �dx�t. But this requirement simply means that
dopamine response needs to have the opposite sign when the
interneuron response is off target. That is, dopamine release needs
to be reduced when the striatum makes an error. This reduction is
entirely compatible with the dopamine response to reward predic-
tion errors (see Schultz, 1998, 2002, for an extensive review).

Contrastive Hebbian Learning and SP Neurons

The CHL algorithm still requires an exact representation of the
correct destination in striatopallidal projection (SP) neurons. To
understand how this could possibly happen without supervised
training, we can express Equation B3 in probabilistic form:

�wi,j � P�x � t�xjxi � P�x � t�xjxi.

Assuming that there is sufficient initial noise in the neuron
response to explore among different possible patterns, the weight
update is eventually dominated by the probability of an ensemble
to produce a reward or a punishment. In particular, SP neurons that
encode for the desired destination are more likely to incur in a
negative learning signal than other destinations (which, as a sim-
plification, we can imagine as having no effect). In the long run,
therefore, their synaptic weights with the striatal interneurons will
fall to zero, and they will simply remain in the “down” state (i.e.,
inactive) when the corresponding striatonigral projection neuron
(SN) neurons are activated.
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