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1. The BICA Doctrine

A cognitive architecture is a computational model or framework used for the design of
intelligent agents. Biologically Inspired Cognitive Architectures, or BICA, emerge at
the intersection of computational and brain sciences, as the new integrative paradigm
in non-von-Neumann computing, unifying other popular paradigms in artificial

*A manifesto of the emergent BICA community represented at the BICA 2010 conference: Arlington,
Virginia, USA, 12—14 November 2010 (http://bicasymposium.com, http://roboticslab.dinfo.unipa.it/
bica2010/).
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intelligence (AI) including connectionism, evolutionary computation, nonlinear
dynamical systems, Bayesian networks, production systems, and many others. Why
and what makes this new paradigm different and better? The answer can be found in
the foundational ideas of BICA. One of these ideas is completeness: in contrast with
previous limited attempts, the BICA ambition is to develop a complete biologically
inspired agent capable of intelligent behavior in realistic environments. This is
complemented by the idea of biological inspiration, which has two aspects. One is the
borrowing of information processing and learning principles from biology, where they
are known to yield the unparalleled robustness, flexibility and evolvability of natural
intelligent systems. Another aspect of biological inspiration is the desire to achieve
cognition in artifacts that is similar to human cognition, so that the artifacts would
integrate better into the human society. An artifact of this kind will be human-
compatible in the strong sense: e.g., understandable by humans from its behavior,
trustworthy, communicative, sensible, {riendly, capable of human-like emotions (at
least in its apparent behavior), reasoning and learning.

Here the last detail, if taken seriously, becomes the most important foundational
idea of the BICA doctrine. It can be called the principle of cognitive growth. This idea
simply turns upside down the original paradigm of AI, which was to develop,
implement and integrate strong, powerful, sophisticated, often optimal capabilities.
While it is true that this process can result in synergy, it did not result in a major leap
during the last 50 years of Al In contrast, the BICA challenge is to find a design as
weak and simple as possible, limiting it to the bare critical mass of intelligent
capabilities that enable human-level learning. That is, the critical mass from which
the self-sustained cognitive growth can take off and go on up to the adult human level
of general intelligence.

But, does this notion of “critical mass” make sense in the context of human-level
general intelligence? Examples from biology suggest a positive answer to this ques-
tion. Neuroanatomically, the difference between the ape brain and the human brain
essentially amounts to minor differences in sizes of brain structures [e.g., Semendeferi
and Damasio, 2000]. Even the rat brain is used as a model of the human brain in
neurophysiological studies of higher cognitive functions [e.g., Babb and Crystal,
2006]. It has been reported that certain birds, for example, seem capable of “theory of
mind” [Dally et al., 2010], learn to make and use tools [Hunt, 1996], develop abstract
concepts and learn to communicate in English [Pepperberg and Gordon, 2005]. Yet, a
huge gap separates humans from other animals in the general ability to learn. No
non-human animal (and no computer today) can be trained like a student, e.g., to
understand linear algebra and pass an exam in it. Therefore, it appears that a small
step in the functional organization of the brain can make a huge difference. The
present state-of-the-art in BICA research suggests that we may be close to the point
where we can make this step that would allow us to solve the BICA challenge. The
essence of the BICA challenge is to replicate the human general ability to learn in
artifacts.
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Every approach to developing a human-level artificial intelligence has its major
obstacle. The major problem of the BICA challenge understood as defined above
appears to be in the identification of the critical mass. Once precisely identified, it can
be built. Below we consider the four major forces and needs (the “pillars”) that drive
BICA research today. We symbolically associate them with the four letters of the
acronym: “B”, “I”, “C”, “A” and explain this association below.

Although distinct, these four elements are connected by many common threads,
often involve the same problems, and frequently benefit each other. Our hope is that
the four major forces, when put together, will allow us to solve the ultimate BICA
challenge. Therefore, we call for a unification of efforts across research communities
and fields toward an integrated approach that leverages progress across domains and
builds on advances in related fields.

2. The Four Pillars of BICA

In recent years, four major forces concurred to focus research on biologically inspired
integrated intelligent systems. We briefly outline them below.

A first, bottom-up, driving factor has been the increased understanding of biological
systems at the level of elements, which has resulted in the possibility of interpreting the
brain’s biological circuits with more formal computational abstractions than it was
done in the early years of neuroscience, opening up bridges to higher-level Al research
(the “reverse-engineering the brain” challenge, Albus [2010]).

The second driving force is the push for a unification across humanities, engin-
eering and neurosciences, a manifestation of which is the series of recent attempts to
develop a science of the mind [Albus et al., 2007] or a science of consciousness. The
idea is that we need more than just a statistical model that allows us to make good
experimental predictions. The fundamental human drive to learn and desire to
survive and propagate leads us to think about conscious machines that one day
will become an extension of our culture and ourselves. The brain is ultimately an
information-processing device, and there seem to be no objective reason that forbids
the replication of the same principles in a different substrate.

The third element is the capability of re-using, distributing, and integrating
models. Recent years have seen the advent of many integrated models, capable of
bridging the gap between a plausible structural simulation of neuronal circuits and
high-level behavior in complex tasks. These developments have been instrumental in
introducing biological constraints as a means to compare alternative theories. They
also pose new challenges in terms of model distribution, comparison, re-use and data
sharing via repositories. Meeting these challenges would provide for faster progress
toward longer-lasting, robust models.

Finally, the fourth, top-down, force has been the increased research on cognitive
and integrated architectures, which has achieved unexpected successes and has
increasingly found inspiration and challenge in the comparison to real, biological
systems. Those architectures attempt to provide an account of general intelligence,
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rather than task-specific attempts that have come to dominate the field of artificial
intelligence recently.

According to the above, the four main scientific views and associated schools of
thought in BICA research can be listed as follows: (B) computational neuroscience,
that tries to understand how the brain works in terms of neurophysiological mech-
anisms and neuroarchitectures; (I) human-mind-inspired artificial intelligence, aiming
at anthropomorphic artificial minds that can be understood by humans intuitively,
that can learn like humans, from humans and for human needs, and therefore can
replace humans at work; (C) the challenge of cognitive modeling that pursues higher-
level computational description of human cognition and behavior based on higher-
level abstract models and cognitive architectures; and (A) architectures implemented
in real artifacts that put the above ideas together. These four fundamental scientific
approaches labeled by the letters of the acronym BICA are addressed in detail below.

3. “B” for Biology: The Bottom-Up Reverse-Engineering of the Brain

The human brain is the gold standard for comparing artificial intelligent systems. In
the history of computer science, the brain has been the inspiration for the intro-
duction of a number of computer science techniques, like perceptrons [Rosenblatt,
1958] and networked computers [Licklider, 1968]. However, limitations of these early
ideas were soon understood [Minsky and Peipert, 1969).

Later, the connectionist revolution in the 1980s opened up the possibility of
creating artificial neural networks capable of performing computationally interesting
tasks [Hopfield, 1982; Rumelhart and McClelland, 1986]. The enthusiasm of the
original connectionist revolution had been somewhat curbed by the understanding
that very little was known at the time about important features of the biological
circuits, and that the similarity between artificial and biological neural networks was
more limited than originally estimated.

Brain research in recent years has shed light on a number of issues, including the
way neurons encode and transmit information, the way information is encoded across
large ensembles of neurons, and the way neuronal ensembles can be modeled to
achieve large-scale simulations. Behind these advances is a story of bi-directional
exchanges between AI and the brain sciences, which will be outlined in the sections
below.

3.1. From AI algorithms to brain signals

The renewed connection between brain biology and artificial intelligence has also
been fostered by the interpretation of certain neural signals in terms of well-under-
stood algorithms that can be usefully adopted at a more symbolic level.

The most glaring example is perhaps reinforcement learning. The reinforcement
learning problem is an optimal control problem where an agent has to learn the value
of its available actions based on environment feedback [Sutton and Barto, 1998]. A
particularly elegant and successful formulation was given in 1988 by Richard Sutton
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[Sutton, 1988], in a paper where he discussed the possibility of estimating the actual
value of an action by comparing two successive estimates of its value. The simple
rationale behind this idea is that, while the actual value of an action is initially
unknown, estimates become increasingly accurate with experience, and therefore
the difference between successive estimates can be taken as a reliable error measure.
Because of the nature of its estimates, this algorithm is known as Temporal Difference
(TD) learning,.

In a series of studies, Schultz and colleagues [Schultz et al., 1993; Schultz, 1998]
found that the response of dopamine neurons projecting to the basal ganglia matched
very closely the changes in the error term in TD-learning. Subsequent studies and
computational analysis have confirmed the similar nature of the two signals [Niv
et al., 2005].

The match between a universal biological mechanism and an AT algorithm, which
was initially developed independently of neurophysiological considerations, is sur-
prising in itself. Its importance, however, extends beyond this simple identification.
The error term in the TD-learning algorithm presupposes a number of preliminary
computations, including the estimates of the values of two consecutive states and the
calculation of their differences. It is also possible to entertain a computational
architecture that would make use of the calculations of the error term, most notably
the so-called actor-critic architecture. Given the identification of the dopamine signal
with the error term, it was possible to identify the functions of different parts of
the circuit around the dopamine neurons by matching the required preliminary
(or subsequent) computations with the neuron populations that lay upstream
(or downstream) of the dopamine cells. This has led to a number of important
clarifications regarding the nature of the basal ganglia circuit [e.g., Barto, 1995].

A second example is the nature of computations in the hippocampus. The
hippocampus is a folding of the archicortex inside the temporal lobe cortex. Although
in humans it is crucial for the formation of episodic memories [Scoville and Milner,
1957], its most basic function is perhaps the creation of spatial representations. In
particular, studies in rats have identified two types of cells with remarkable prop-
erties in the hippocampal structure: grid cells in the medial entorhinal cortex [Hafting
et al., 2005; Fyhn et al., 2007] that fire when the animal crosses the intersections of
imaginary lines that divide the environment in a grid, and place cells in the hippo-
campus whose activity is tied to the animal being in a specific place [O’Keefe and
D’Ostrovsky, 1971]. The nature of these two cell types has been debated, but their
computations can be explained as intermediate results of path-integration algorithms
[McNaughton et al., 1996; Samsonovich and McNaughton, 1997; McNaughton et al.,
2006; Meyer and Kieras, 1997; Witter and Moser, 2006; Touretzky and Muller, 2006].
It has also been shown that place cells can be seen as the computational output of path-
integrating over grid cell representation [Savelli and Knierim, 2010].

In summary, algorithmic solutions to Al problems have provided powerful means
to interpret the activity of populations of neurons in the brain, and provided an
initial starting point to speculate on the functions of larger circuits.
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3.2. Advances in technology

The convergence in trying to understand and reproduce the biology of intelligence
would not have been possible without integration of technological improvements in
the brain sciences with advances in cognitive modeling. Many computational cog-
nitive models of brain functions have been traditionally compared against behavioral
data obtained by neuropsychological patients [e.g., Plaut, 2002]. A small number of
models have been matched against data obtained from event-related potentials
(ERP), that is, surface recordings of field potentials in the brain. The method of ERP
found interesting applications to biological models of error correction [Yeung et al.,
2006] and word learning and hemispheric specialization [Mills et al., 2005].

At the end of the 1980s, the introduction of a variety of new brain imaging
techniques, including position-emission tomography (PET) and functional magnetic
resonance imaging (fMRI), opened the possibility of non-invasive spatiotemporal
mapping of neuronal activity involved in the execution of specified cognitive tasks
[e.g., Posner and Raichle, 1994]. Initial studies were limited to the adoption of
“block” designs, i.e., simple experimental manipulations that lack the capability of
detecting interaction effects. This initial limitation was alleviated by the adoption,
over the years, of a number of new statistical techniques for the analysis of {MRI
data, and many software packages are now available that permit quite sophisticated
data processing [e.g., Friston et al., 2006].

The increased sophistication in data analysis also reflects an increased conscious-
ness that computations of complex functions are carried out at a network level. If
earlier studies were focused on identifying single regions by comparing activity pat-
terns across different tasks, more recent experiments now permit the analysis of how a
task is carried out in the functional network of brain structures, and the introduction
of functional connectivity analysis has been given the opportunity to examine the
communication between processing centers. A number of architectures have been
proposed that describe the functional network dynamics [Anderson et al., 2007; Just
and Varma, 2007].

3.3. The ultimate architecture: brain connectivity

Functional connectivity ultimately relies on the existence of “structural” connec-
tivity, i.e., physical bundles of axonal projections that connect distinct brain regions.
The identification of these projections has traditionally been performed using various
biochemical and genetic staining techniques that typically require in vitro analysis
and therefore do not allow for temporal resolution.

The recent introduction of Diffusion Tensor Imaging [DTI; Le Bihan et al., 2001]
opens up the opportunity of tracking the structural connectivity between brain
regions. DTT is based on the fact that physical bundles of fibers are oriented along
particular directions in space, thus creating a preferential axis (“anisotropy”) for
molecules to diffuse. Spatial anisotropy can be analyzed, thus allowing the
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reconstruction of structural connectivity. The Human Connectome Project [Sporns
et al., 2005] aims at reconstructing and validating the entire connectivity map of the
human brain. Such a map would be invaluable in providing a detailed picture of the
physical architecture of the human brain. In turn, a detailed physical architecture
can provide a strong ground truth to evaluate competing biological models, and a
strong foundation for reverse-engineering cognition.

3.4. Other technologies

In addition to the impressive growth of fMRI, other new technologies have permitted
better insights into the brain. One of the limits of imaging techniques is that they are
correlational in nature, and cannot permit causal inference. Suppose, for instance,
that two areas are frequently co-activated by a set of tasks: There is no way to infer
whether they are both needed to perform the task, or whether they perform the same
computation independently and in parallel, or whether only one is needed and the
activation of the second region is merely coincidental — due, for instance, to a
common underlying input, or due to the unavoidable but spurious transmission of a
signal along pathways that evolved for other reasons. There is no way to test these
alternative hypotheses unless one interferes with the workings of one of the regions.

Fortunately, it is possible to perform something akin to “virtual” and reversible
lesion of a brain region in vivo by using Transcranial Magnetic Stimulation [TMS;
Hallett, 2000]. TMS involves the use of a powerful magnetic field to induce a short-
lived, transient electric current in a particular area of the cortex. Inducing this
current repeatedly results in a temporary down-regulation of the target neural
population.

In general, the bottleneck of fMRI is temporal resolution, which is typically on the
order of seconds, i.e., one- or two-order of magnitude larger than the duration of the
cognitive processes investigated. Magneto-Encephalography [MEG: Himéldinen
et al., 1993] is a technique that permits high-quality analysis of neural currents at the
millisecond timescale. It allows a temporal resolution that is comparable to ERP, but
a much finer-grained spatial resolution. Other neuroimaging techniques that provide
unique advantages include near-infrared spectroscopic imaging (NIRSI) that
measures neuronal activity in the brain from the top of the scalp, magnetic resonance
spectroscopy (MRS) and chemical shift imaging (CSI) that permit the measurement
of certain metabolites as an index of neuronal effort, fatigue, or decline. Finally,

various combinations of imaging methods are used to maximize the benefits of each
method by coregistering their activities (fMRI-MRS, fMRI-PET, {IMRI-EEG, etc.).

4. “I” for “I”’: The Human-Like Self in a Machine

Modern computer technology, together with the state-of-the-art in artificial intelli-
gence, makes it possible to create intelligent teachable agents compatible with
humans in their core learning abilities, including the abilities to acquire language,
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master creativity skills, and develop general and specialized intelligence. As a result,
machines possessing general and specialized intelligent capabilities at a human level
and above are anticipated to emerge in the future, becoming useful members of the
human society. This challenge has an integral nature, and its solution will occur upon
reaching the critical mass discussed above, as a result of a self-sustained chain
reaction of cognitive growth rather than a sequence of incremental steps in devel-
opment of cognitive architectures. It is therefore vital to identify the key elements of
the critical mass and to find out which of them are missing in existing cognitive
architectures.

In our view, the most vital key element of the critical mass that is still missing in
modern cognitive architectures is the complex of functional characteristics associated
with the human notion of “I”, or the self. Here are some arguments supporting this
point of view.

The sense of “I” or self is the central concept in techniques known in educational
science as self-regulated learning (SRL), and it is also a powerful device used in human
metacognition in general. Self-regulation refers to the degree to which a learner is a
metacognitively, motivationally, and behaviorally active participant in his or her
learning process [Zimmerman, 2002]. SRL is a critical strategic thinking process for
supporting students’ abilities to learn and solve problems. The concept of SRL plays a
central role in modern educational science. In general, SRL involves a complex set of
techniques and strategies employed by learners for deliberate regulation of their
learning processes [Winne and Perry, 2000; Winne and Nesbit, 2009]. According to
Zimmerman [1990; 2000; 2008], SRL includes three phases: (i) Forethought: under-
standing the task, setting goals and attitudes, selecting strategies, planning steps. (ii)
Performance: executing the plan, trying out strategies under self-monitoring and self-
control. (iil) Reflection: self-evaluation, causal attribution of outcomes, conflict res-
olution, adaptation, etc. The concept of self is critically involved here.

Furthermore, it is known that the cognitive leap in human development at the age
of three to four years, during which a large complex of higher cognitive abilities
become available (most of which are vital for subsequent cognitive growth), is gen-
erally associated with the emergence of the adult kind of self in a child [Bartsch and
Wellman, 1995; Moore and Lemmon, 2001]. Therefore, it seems that having a human-
like self is a prerequisite for an artifact to be able to learn like a human.

Yet, the nature of the human self is poorly understood and seldom modeled
computationally. Most designers of popular cognitive architectures would agree that
their implemented agents lack any sense of self, and they do not consider this a
drawback. The reason is that the notions of a self and self-awareness are understood
in the modern artificial intelligence literature in a limited sense. E.g., “The self” may
refer to the robot’s body, or to the running software, or to the set of variables under
homeostatic control by the agent, or to the agent as a whole contrasted with other
agents or the environment (some agents have this kind of self). These basic notions of
the self play the grounding role with respect to the more elaborate concepts of
personhood [Damasio, 1999).
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The essence of the human sense of “I” is, in fact, simple and distinct from them: it
can be understood as an idealized abstraction of a subject, who is the owner of
experiences and the author of volitions [minimal self: Gallagher, 2000; conscious
self: Samsonovich and Nadel, 2005]. These ideas were taken as the basis for the
design of the self-aware cognitive architecture GMU-BICA [Samsonovich and
De Jong, 2005; Samsonovich et al., 2009].

The sense of “self” is also pivotal in understanding the computational nature of
another hallmark of human behavior: consciousness. A favorite of philosophical
debates for centuries, the nature of consciousness had been discussed in the past
within AI research [e.g., McCarthy, 1999; Sloman and Chrisley, 2003], and has
become a prominent research field in cognitive psychology and cognitive neuro-
sciences [Baars, 1997; Koch 2004]. Despite its elusive nature, several theories have
been advanced to quantify and model consciousness [Balduzzi and Tononi, 2008;
Dehaene et al., 1998]. In the field of cognitive architectures, there have been some
speculations on the nature of consciousness in ACT-R [Anderson, 2007] while the
LIDA cognitive architecture was explicitly designed to incorporate a computational
definition of consciousness [Franklin, 2007], cf. Sloman [2010].

Yet at the same time the concept of a self remains poorly understood by major Al
scholars [e.g., Sloman, 2008]. The problem appears to be of a terminological nature: it
is necessary to pinpoint the precise notion of the self that is relevant to making
progress in AT before a discussion of this concept can turn fruitful. To conclude this
section, we point that recently good progress was made in linking the notions of self,
consciousness and cognitive architectures by Robert Van Gulick, based on the
development of his higher-order global state (HOGS) concept [Van Gulick, 2001;
2003]. This theory could provide a good basis for future metacognitive architectures.

5. “C” for Challenge: Bridging Models and Data Together
5.1. Integrated repository

The increase in computational power and software sophistication in recent decades
has enabled the growth of increasingly complex models of cognitive and brain
functions. Increasingly complex models per se, however, are not a guarantee of pro-
gress. Models can be developed at different levels of abstraction, making their
relationship to each other obscure until clear links between levels are established.
Modeling paradigms also tend to specialize to particular classes of tasks for which they
are well suited, assuming but seldom establishing their applicability and relevance to
other types of tasks. Sets of mechanisms and representations are often posited and
bundled together, making credit assignment of successes to individual components
difficult to perform, and generalization difficult. While models accumulate, true
cumulative progress remains elusive.

To solve the problem, we propose to create an integrated public repository of
BICA. The objective is to identify the necessary means to achieve greater rates of
convergence and incremental progress in cognitive modeling through the use of a
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shared repository of computational cognitive models, experimental tasks, and per-
formance data. This repository would serve multiple complementary purposes.

First, an integrated repository would facilitate direct comparison of different
models. The development and study of cognitive models has been ongoing for decades,
yet it is difficult to see how different models map onto each other, what features or
components are missing, and what progress has been made. Different modeling com-
munities speak different languages and largely ignore each other. Detailed models and
data are seldom available in a comparable format, making direct model comparisons
partial at best and tendentious at worst. Therefore, we need to develop a common
language for the description of modeling paradigms to achieve an understanding of
how they relate to each other. An integrated repository would promote the use of
common tasks and data sets as benchmarks for each subfield. It would lead to the
development of shared, widely accepted comparison metrics.

As a first step toward these goals, we created a comparative table of main cog-
nitive architectures using collective efforts of many researchers involved in their
design, study, and usage. The current version of the comparative table is available at
http://bicasymposium.com/cogarch. Reaching a cross-community agreement on the
structure and the content of the table at this level will be a step allowing us to move
down to details and forward — to further goals.

A second, practical, purpose of the repository is to provide a centralized resource
that modelers, students, and teachers can access when they want to start a modeling
research project. The repository should facilitate finding all the available models for
one’s needs and purposes. This includes source code, executable, documentation,
papers, and support community. Finding all the existing models for a given task or
problem can be difficult since while some tasks are well identified, others can arise in
many different forms. The repository would also make available all relevant beha-
vioral or neuroscience data for a given task. The raw data rather than the aggregate
analyses would be provided in publications as additional constraints for the devel-
opment of increasingly refined models. Finally, together with data the repository
would make available an implemented version of the corresponding experimental
tasks. Too much time (as much as half by some estimates) in modeling projects is
spent (re)implementing and connecting to task environments. Often different
modelers abstract away from a common task and thus prevent models from being
directly comparable.

Thus, the repository would provide an immediate and organized way to access an
overview of relevant information, especially key findings of specific subfields for which
to develop and validate models. Making available all relevant results would promote
broad and integrated rather than partial and selective accounts. Conversely, the
repository would provide a consistent and comparable record of activity for the
various modeling frameworks. This would provide an archival record of the range of
coverage and would highlight the core focus of each framework. It would also
encourage keeping models updated to keep credit for successive versions of the
framework.



Int. J. Mach. Conscious. 2010.02:171-192. Downloaded from www.worldscientific.com
by UNIVERSITY OF MARYLAND on 01/11/13. For personal use only.

The B-1I-C-A of Biologically Inspired Cognitive Architectures 181

Another function of the repository is to enable the re-use and integration of
models. That would in turn promote consistency in parameters across models, and
discourage excessive (i.e., post hoc) parameter fitting and in favor of consensus
values. Similarly, re-use and integration of models would promote ontological con-
sistency in domain representation. The availability of standard ways of encoding
knowledge for specific domains would enable the development of more complex,
comprehensive models validated over broader range of findings.

A practical benefit of an integrated repository would be to encourage the devel-
opment of modeling tools and standards. Developing modeling tools (e.g., for model
editing or parameter search) is a rather esoteric niche with little benefits. Making
them available to a broad community would benefit the community through
improved productivity. The repository would also promote the development of
standards, such as for the integration of models and tasks environments. This would
raise productivity as well as provide additional constraints on models.

5.2. Practical considerations

While similar repositories have proven successful in fields such as biology and physics,
a major practical issue is how to bootstrap them to the point where they become self-
sustaining. A key enabling factor is to give proper academic credit for uploading
materials. This would require limiting submissions to materials associated with
published papers, or subjecting submissions to independent peer review. Full
descriptions of models can then be referenced with a DOI system or counted as online
publication as in Scholarpedia (which includes a smart revision system).

To encourage submission, making models and data available in repository should
be made a condition of publication and/or funding (as it happens in other fields).
This can easily be done for specialized conferences (e.g., NIPS, ICCM, BICA).
Another incentive is that making behavioral data available for a given task will
establish it as a de facto benchmark for its subfield. This will lead to a convergence
towards a standardized set of tasks that will keep expanding rather than remain
static and thus subject to be gamed, as is often the case with fixed benchmarks.

Tying the repository into an external computational system would allow users to
make use of that system with no extra investment in effort. Examples of such external
systems include simulation systems (e.g., Unreal Tournament and CASTLE:
https:/ /project.setcorp.com/castle/), model running, and parameter optimization
system (e.g., MindModeling.org) and experiment system (e.g., Eprime). This would
also enforce some code-compliance and standardization policies.

Irrespective of popularity, practical issues remain in making a repository suc-
cesstul. Simply uploading tasks and model code is not enough. A number of issues
should be considered. Most fundamentally, a standard interface between cognitive
models and task environments is needed to assure portability across tasks and
models. Tasks and models could only be included in the repository when they are
compatible, ensuring interoperability. If both tasks and models comply with the
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interface, both scientific (principled model comparison, separation between task and
model) and technical (re-usability, productivity) goals will be enhanced and the
exponential growth associated with systems embracing common standards (e.g., the
Internet, the Personal Computer) will then be possible. The primary scientific
obstacle to such a common interface is to agree upon a common level of description
across models. The alternative is to adopt a multi-level model approach that inte-
grates models across multiple grain scales.

Another maintenance issue is how computational models need to be updated and
kept current. Developers should have incentives to maintain their code up-to-date to
claim cumulative credit from models developed under previous versions of their
framework. The main issue is how much standardization should be required (e.g.,
fixed parameters, common knowledge representation) for a framework to claim an
integrated account across the models that it supports.

Most practically, infrastructure funding for the repository should be provided by a
funding source, e.g., Department of Defense (DOD) research agencies, DARPA, NSF,
or private foundations. The alternative is incremental funding through individual
projects contributing ancillary development to the repository, which would likely
result in slower, piecewise development. Even if centralized, repository development
should be focused on the modeler’s needs through informal pools and surveys to make
sure that it corresponds to actual developmental patterns and supports the modeling
activity.

6. “A” for Architecture: Where it all Comes Together
6.1. Scaling up complexity

The ultimate aim of BICA is to reproduce intelligent human-like behavior. This has
been the realm of cognitive psychology, a field within which there exists a long and
successful tradition of computational modeling. A subgoal in this challenge is to
create a computational replica of the human general learning ability. The robustness
and scalability of learning should define the success criterion.

Even in this field, the convergence between brain sciences and Al is making it
possible to create ambitiously complex cognitive models. These models are shedding
new light on the origins and nature of human cognitive processes, and are valuable
tools in exploring the computations performed by biological intelligent systems. The
progress that the brain sciences have made in describing and understanding specific
brain circuits facilitates their integration into a consistent system. For this reason,
the last few years have seen the appearance of unusually large models that are both
biologically grounded and capable of complex behaviors.

There are now many examples of biologically grounded systems that are func-
tionally rich and exhibit a remarkable capacity for performing complex tasks. For
instance, the Leabra architecture [O’Reilly and Munakata, 2000] is a unified frame-
work where separate modules for vision, action, and working memory (the latter
including the basal ganglia gating system) can be connected into a single system.
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Those modules use similar, consistent principles but provide different functionality
by using distinct parameter sets, allowing functional differentiation between neural
areas while preserving architectural unification. As a result, these integrated models
can realistically perform complex tasks (such as the 1-2-AX which requires two
working memory loops for maintaining information [O’Reilly and Frank, 2006]) that
just a few years ago would have been considered beyond the capabilities of then-
current neural networks.

The possibility of interpreting micro-level neural computations in terms of macro-
level symbolic algorithms also provides a natural means to scale up to more abstract
and treatable forms of computations. One interesting example is offered, again, by the
study of the basal ganglia. Advances in the understanding of the computational
properties of the dopamine signal have led to the identification of certain parts of this
circuit with the “actor” component in the actor-critic architecture [Joel et al., 2002].
This has led to a closer computational exploration of the properties of the “actor”, and
in particular on the nature of the “actions” that the circuit can perform. These
“actions” have been successfully interpreted as the opening or closing of specific “gates”
that control the flow of information to working memory [Frank et al., 2001]. Building
from this assumption, several authors have suggested that the basal ganglia can be
ultimately interpreted as an executor of conditional IF-THEN rules, like in a tra-
ditional production system [Brown et al., 2004; Stocco et al., 2010]. This identification
has created an unexpected bridge between the neural circuitry of the brain and a well-
known and widely-adopted control model that is ubiquitous in cognitive science and in
AT research. At the same time, neural correlates of cognitive functions associated with
production rules are probably not limited to basal ganglia and are likely to involve the
medial temporal and the prefrontal cortices, among other brain structures.

In summary, advances in brain research have created novel and unexpected
connections with Al at different levels of analysis. On the one hand, increased
understanding of brain physiology and microcircuitry have made it possible to con-
strain neural models and explore new and novel ways of neural information proces-
sing. On the other hand, unexpected similarities have been found between the
behavior of certain neural populations and the terms in a number of AI learning
algorithms. Finally, progress has been made on how to understand the behavior of
brain circuits in terms of higher-level components and approximations, opening up
the possibility for large-scale simulations.

6.2. Convergence in architectures

Cognitive architectures can be thought of as providing the basic computational pri-
mitives for an artificial mind, upon which specific task behaviors can be constructed
[Anderson, 1983]. Research in this field dates back to Allen Newell, who outlined the
first general problem-solving system [Ernst and Newell, 1969] and introduced the use of
production systems as a model of cognitive control [Newell, 1973a]. Over the years,
many different cognitive architectures have been proposed [Anderson, 1983; Thibadeau
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et al., 1982; Laird and Newell, 1983; Meyer and Kieras, 1997; Just and carpenter, 1992;
Mitchell et al., 1989]. Research in this field has produced multiple, often incompatible
approaches, that lately seem to be converging under biological constraints.

Research on cognitive architectures has been remarkably important in both Al
and cognitive psychology. In Al it has been one of the few research fields that have
stressed the need for general intelligence, as opposed to research on problem-specific
algorithms and techniques. It has also kept a healthy focus on the design of complex
systems and the re-use of knowledge representations across different domains.

Traditionally, cognitive architectures in Al do not specifically aim at reproducing
any biological properties of intelligence, but only at creating artificial agents that can
behave and act intelligently and successfully operate in an environment. Thus,
AT-oriented cognitive architectures differ in design and are typically evaluated on the
grounds of what they can possibly achieve. Occasionally, however, their design
choices are influenced by the observation of the architecture of natural systems. In
recent years, for instance, this has suggested the integration of perception and action
into a connected system [Brooks, 1986; Bell, 1999].

In the domain of cognitive neuroscience and cognitive psychology, the existence of
multiple incompatible architectures has been regarded as more problematic than in
Al The reason is obvious: A truly “cognitive” architecture like ACT-R. [Anderson,
2007] or EPIC [Meyer and Kieras, 1997] not only aims at producing intelligence
behavior across a variety of tasks, but also claims a strict correspondence with the
processes occurring in the human mind. In this field, two different architectures can
both be wrong, but can never both be right. The traditional behavioral measures of
cognitive psychology, e.g., reaction times and accuracy, are often not sufficient to
distinguish between the two. For instance, the ACT-R and EPIC architectures divide
on the existence of a central cognitive bottleneck, with ACT-R claiming its existence
and predicting serial cognitive processing, and EPIC negating it and predicting
parallelism. A number of behavioral experiments and computer simulations were run
[Hazeltine et al., 2002; Anderson et al., 2005] showing that the observed pattern of
reaction time data could, in fact, be explained by both architectures. Similar diffi-
culties in testing different architectures, coupled with their complexity and large
number of free parameters, have indeed made some psychologists suspicious of the
approach altogether [Roberts and Pashler, 2000].

It is not surprising that cognitive architectures have welcomed the progresses in
the neurosciences. Assumptions that are untestable at the behavioral level become
testable at the biological level. The possibility of investigating the neural hardware
gives a new meaning to the term “architecture”. In fact, architectures such as ACT-R
and 4CAPS [Just and Varma, 2007] have moved from explaining behavioral
phenomena to modeling neuroimaging data, and Soar [Laird, 2008] has moved from
simply performing complex tasks to achieving a degree of psychological fidelity. The
result is a convergence between architectures at the organizational (modular) level, if
not at the mechanistic level. This convergence can also happen between architectures
at different levels of description, e.g., ACT-R and Leabra [Jilk et al., 2008].
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A third forcing factor that is pushing cognitive architectures towards BICA is the
broadening of the scope of such architectures. Traditionally, cognitive architectures
were limited to tasks such as reasoning, memory, learning, and language processing.
More recently, interest has been growing for phenomena such as creativity, life-long
learning, and consciousness [Samsonovich et al., 2009; Franklin, 2007]. All of these
phenomena, like consciousness, are typically attributed to and studied in biological
systems. Life-long learning in humans is of particular interest, as it has no counter-
part in lower animals or in artifacts and plays the pivotal role in the emergence of
human intelligence.

In summary, cognitive architectures can benefit from biological constraints in at
least three ways. They can use those constraints to distinguish between realistic and
unrealistic assumptions and better model behavioral data; they can get insight on the
design choices that underpin the intelligence and adaptivity of natural agents; and
they finally can take inspiration to attack the computational nature of some hardcore
and hitherto unreachable properties of biological systems.

7. Concluding Remarks

This closing part reflects upon the future of BICA. It seems that the conclusion could
be somewhat similar to Newell’s [1973b] review. Compared to Newell’s earlier pos-
ition, we can at this point not just point to an architecture as a possible answer, but
also point to what will be needed in architectures. In this paper we tried to accom-
plish an unusual task: to briefly and quickly discuss the current state-of-the-art in
BICA research, and to note what we think are the four most important forces driving
the field of BICA at this point in time. We discussed the importance of critical mass,
chain reactions, scalability and scaling laws, tests and metrics, and, of course, steps
for a roadmap for future development, improvements and applications of BICA. In
this discussion, we have outlined the deep connection and cross-fertilization between
the study of general artificial intelligence and the study of how the brain enables
cognition. In the past 20 years, advances in one field have found resonance in the
other, and there is increasing room for further investigations towards an under-
standing of the general computational basis of intelligence through its biological
roots. Although notable progress has been made, there are a number of possible
future directions where the integration between brain and computer sciences is likely
to expand. We would like to finish this manifesto by a short list of promising future
directions in BICA research.

7.1. Cognitive flexibility

A hallmark of human intelligence is flexibility, i.e., the capacity of strategically
allocating or diverting resources to a task. That capacity is the first and most
important criterion in the proposed Newell test for a theory of cognition [Anderson
and Lebiere, 2003]. In contrast, most Al systems are brittle and inflexible, unable to
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generalize beyond their pre-programmed abilities to the variety of tasks and needs
that populate real-world human experiences.

At an even deeper level, flexibility is a property of the human brain. A network of
interconnected brain region is recruited every time we perform a task. However,
exactly which regions are recruited and why depends on task properties, such as
whether it is novel or practiced, complex or difficult, perceptual or abstract, and so
on. It is not clear exactly how different regions are selected, and on the basis of which
characteristics, but we do know that regions are dynamically recruited, with new
areas becoming active as the old ones are outstripped of their resources [Prat et al.,
2007]. Very different computational explanations have been given (compare, for
instance, Just and Varma, [2007], with Anderson et al., [2008]). Again, insight on the
necessary computations required to perform these task reconfigurations will not only
shed light on some fundamental underpinnings of human intelligence, but also allow
us to reproduce it in our machines.

7.2. Life-long learning and plasticity

AT has developed important algorithms that deal with learning in specific domains.
Real-life learning in humans, however, is substantially more complex. A first notable
difference is that human learning spans a number of years, with new facts being
learned and continuously assimilated within existing knowledge. A second difference
is that real-life learning is strategic, as humans are able to decide when and what to
learn. Finally, humans surpass machines in their metacognitive abilities, being able to
reflect on their own learning abilities and how to improve their own performance.

Developing more realistic long-term learning machines could have a number of
practical applications in education. Cognitive architectures yielded an important
result in educational technology with the development of intelligent tutoring sys-
tems, where cognitive models are created and dynamically updated to match the
student’s skills [Ritter el al., 2007]. More realistic cognitive models can largely
improve their efficacy, and some attempts have been made to extend the tutors with
the use of neuroimaging data [Anderson et al., 2010]. Finally, the most promising
contribution from BICA to educational technologies is expected in the field of
metacognitive tutoring systems [Azevedo and Witherspoon, 2009].

In the brain, learning is ultimately due to synaptic plasticity. However, plasticity
encompasses other changes in the brain structure, such as development and aging. It
is entirely possible, therefore, that BICA models could be used to predict a child’s
scholastic achievements, or to counter the effects of aging on cognitive abilities in the
elderly. The most interesting task, however, is to reproduce in a BICA the process of
human cognitive growth from a child to an adult.

7.3. Emotions

For a long time emotions had been considered entirely private experiences, laying
beyond the tools of scientific investigation or, even more, AI. With hindsight, we can
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see how progress on BICA was curbed by not taking into account this large and
fundamental part of the human experience.

Fortunately, the scientific advances of the past 15 years have brought emotions
within the spotlight of research and modeling. This was partly due to the realization
that emotions are not so neatly separated from cognition as was originally thought.
Not only can the circuits underlying specific emotions be localized in the brain, but it
has been shown that damage to these circuits crucially affects human behavior,
compromising even high-level abilities such as planning and decision-making [e.g.,
Damasio, 1994]. These considerations have pushed a number of researchers to
investigate the computational leverage of emotions, and attempt to reproduce them
in machines [Picard, 2000], see also Ventura [2010].

Despite these remarkable progresses, much remains to be done to reach a con-
sensus in the field. Many cognitive architectures (such as ACT-R, Soar, and EPIC)
still lack emotional capabilities, and it is not clear how they will be integrated in the
future, while certain steps are being taken toward the development of this under-
standing.

In addition, understanding and displaying emotions is a crucial part of social
interactions. Therefore, understanding them within a computational framework is a
necessary step for developing social agents that can interact naturally with humans.

7.4. Extending the brain and the mind

This article has stressed the goal of understanding the nature of brain computations
as a means to produce artificial, complex intelligent agents. Here and there, we have
shown how the benefits can be reciprocal; for instance, reinforcement learning
algorithms have provided the computational framework to understand one crucial
contribution of dopamine neurons in the midbrain. Perhaps, the field where BICA
can give the most immediate practical contribution to health sciences is that of brain
prosthetics.

A fixture in science fiction, brain prosthetics consist in the ability to restore
function in a damaged brain by connecting it to an artificial device that supplies the
missing computations [Schwartz, 2004]. So far, success in this field has been limited to
perceptual and motor abilities, such as Dobelle’s visual and Schwartz’s motor pros-
thetics [Vellist et al., 2008]. But as our understanding of the computational nature of
cognitive processes and intelligence grows, restoring higher-level functions such as
language, learning capabilities, and control functions will become possible. Exper-
iments on creating artificial prosthesis for the hippocampus, so that episodic mem-
ories can be restored in lesioned rats, have been performed [Song et al., 2009]. The
BICA approach is unique in its integrative approach, where the contribution of
different circuits is framed within the functions of the entire system. As such, it might
be the best approach to make sense of the contributions that higher-level regions
make to intelligent behavior, and to restore their functions. It is therefore possible
that one day we will be able to extend the substrate of our minds into a machine.
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