DUAL-ENERGY CT PRIMER

Dual-Energy Scanners

- HMC: Siemens Force (CT2)
- SCH: Siemens Force
- UWMC: GE Revolution
- SCCA: GE Revolution

Protocoling Dual-Energy CTs

- Dedicated dual-energy protocols (almost always performed in dual-energy)
 - MSK CT for Gout
 - Post-angio CT head
- Preferred dual-energy protocols (may be performed in dual-energy if the scanner is available; radiologist can specify dual-energy if necessary)
 - Single phase abdomen/pelvis, chest/abdomen/pelvis, and pelvis
 - Multiphase abdomen and abdomen/pelvis
 - CT KUB
 - CTA abdomen, abdomen/pelvis, and runoff
 - ERAD Trauma pan-scan
 - o MSK pelvis, hip, and extremities*
 - Neuro and ERAD spine*
- Other protocols are performed in single-energy, unless otherwise specified

*iMAR (iterative metal artifact reduction) on Siemens CTs may soon replace dual-energy CT for metal artifact reduction

Workflow Notes

- Siemens and GE dual-energy scanners must have dual-energy mode turned on before the scan is started
- Dual-energy series are sent automatically by the CT techs
 - Types of dual-energy series sent depends on the specific protocol

- If additional series are needed, call the CT techs
- Additional analysis may be performed on AW Server (GE) and Syngo.via (Siemens)
 - Specific instructions are beyond the scope of this document
 - Screenshots of graphical and quantitative analyses can be sent to PACS

How to tell if your study was performed in dual-energy

- Siemens:
 - Circular field-of-view dashed line is seen on axial images, representing the dualenergy field
 - There are source images at two energy levels, most commonly 90kV and Sn150kV
- GE:
 - Axial images specify a monoenergetic level (most commonly 70keV or 77keV)

What do these series mean?

- Siemens (HMC, SCH)
 - Axial 90keV and Sn150keV
 - Source images, typically sent with a slice thickness of 0.625mm
 - Generally not used in most clinical scenarios
 - Axial DE mixed 0.6
 - 0.6 represents the mixing ratio, a weighted blend of the low and high energy images
 - Mixing ratio could range from 0.4 to 0.7
 - Used for standard image interpretation
 - Axial MPR
 - Specific dual-energy CT applications are included in this series
 - Common naming conventions:
 - "Liver" and "kidney" usually represents iodine map

- "Bone marrow" represents marrow edema map
- "Gout" and "kidney stone" represent mineral maps
- Series naming can be variable among CT techs
- Tips and pitfalls
 - Use non-affected anatomy as your reference for normal
 - On iodine maps, high atomic number minerals (including calcium) will also be bright
 - For each application, choice of color is arbitrary
 - Iodine overlay is usually orange
 - Color scale is variable
 - If in doubt, perform quantification in Syngo.via
- Axial MPR VNC
 - Standard image iodine map = virtual non-contrast (VNC)
 - Research ongoing regarding reliability of using VNC as a surrogate for true unenhanced images
- Axial monoenergentic _____
 - Low monoenergetic images (usually 40-50keV) makes iodinated contrast brighter
 - Great for detecting hypervascular lesions
 - Increased image noise and beam hardening artifact
 - High monoenergetic images (usually 120-140keV) decreases image noise and beam hardening artifact
 - Great for evaluating regions limited by metal artifact
 - Suppresses the appearance of iodinated contrast
- GE (UWMC, SCCA)
 - Axial 70keV and 77keV
 - Represent virtual monoenergetic reconstructions
 - Used for standard image interpretation

- Note that due to GE's dual-energy CT mechanism (rapid kV switching with one receptor), source images at the low (80kV) and high (140kV) energy levels cannot be viewed separately
- Axial 50keV or 55keV
 - Makes iodinated contrast brighter
 - Great for detecting hypervascular lesions
 - Increased image noise and beam hardening artifact
- o Axial 140keV
 - Decreases image noise and beam hardening artifact
 - Great for evaluate regions limited by metal artifact
 - Suppresses the appearance of iodinated contrast
- o Axial VUE
 - Standard image iodine map = virtual unenhanced (VUE)
 - Research ongoing regarding reliability of using VUE as a surrogate for true unenhanced images
- Axial Iodine(water)
 - Pure iodine map without anatomic overlay
 - High atomic number minerals (including calcium) will also be visible
- For other applications, such as mineral maps and marrow edema, manual analysis on AW Server is necessary

Parting words

- In many studies, specific dual-energy outputs are not needed for image interpretation
- Most dual-energy applications are not robustly validated
 - For example, we do not know what iodine concentration correlates with renal mass enhancement and whether this varies between patients and scanners
 - In borderline and ambiguous cases, caution is suggested when interpreting dualenergy outputs
- All dual-energy outputs can be reconstructed into coronal and sagittal
- Color maps can be misleading

- Choice of color is arbitrary
- Use non-affected anatomy as a reference for normal
- If in doubt, perform quantification in Syngo.via (Siemens) or AW Server (GE)
- Dual-energy output quantification cannot be performed in our current PACS

Authors:

Larry Cai, Mahogany Ambrose

Editors:

Mena Flemon, Achille Mileto, Ken Linnau

LAST UPDATED 5/3/2019