Skip to content

How effective is your face mask?*

*Fit means more than fabric.

Have you wondered how effective your cloth mask is in protecting you from the COVID-19 corona virus?  We wondered that too, and this led to our newest research project—studying the effectiveness of cloth face masks. Shahbaz Qureshi, a 2020 UWB Biochemistry graduate, and Praphulla Boggarapu Chandra, postdoctoral researcher, have been working with Dr. Dan Jaffe on testing mask effectiveness. Their research was featured on KIRO 7 news, where Dan Jaffe was interviewed by reporter Jessica Oh.

Shahbaz Qureshi doing mask research
Shahbaz Qureshi adjusts a cloth mask on a mannequin head in an experiment testing the mask’s effectiveness. Photo credit: Marc Studer.

The preliminary research results show that for filtration, fit is more important than the mask material: Tight-fitting masks were twice as efficient in stopping aerosol particles as looser masks. “All masks reduce the particulate—the aerosols you’re putting out in the world and the aerosols you’re breathing in—both ways to some degree,” Jaffe said. “If you wear it properly and you have a tight-fitting mask, it reduces it a lot more.” Dr. Jaffe also plans to present the mask problem to his Quantitative Environmental Analysis class in the upcoming Autumn quarter. “Students will for themselves see: How good is my mask, and how important is the fit?”

Watch the KIRO7 news video on the mask research

Read more about the mask research on the UW Bothell News page

Videos highlight research

Check out our new Videos page! There you’ll find videos that showcase the group’s research over the years. The page includes videos on airborne research in 2001 to current air quality research at Mt. Bachelor Observatory in Bend, Oregon.

Undergraduate researcher Shahbaz Qureshi recorded two videos about the group’s research in the summer of 2019. One shows the Jaffe team working at Mt. Bachelor Observatory, where they are setting up and maintaining research equipment. The second video focuses on a research trip to Boise, Idaho. During the summer of 2019, we measured volatile organic carbons, NOx, and other compounds at a site near Boise in order to understand the impact of forest fire emissions on the tropospheric photochemistry of ozone and aerosols at downwind sites. Qureshi has been conducting research with the Jaffe Group for the last year and graduated from the University of Washington Bothell in June 2020.

VIDEO: Jaffe team research trip to Boise, ID, Aug. 2019

VIDEO: Jaffe team working at Mt. Bachelor Observatory, Bend, OR, Sept. 2019