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Abstract

Recent work on measuring growth with categorical outcome variables has combined the item

response theory (IRT) measurement model with the latent growth curve (LGC) model (e.g.,

McArdle, 1988) and extended the assessment of growth to multidimensional IRT models (e.g.,

Hsieh, von Eye, & Maier, 2010; Huang, 2013) and higher-order IRT models (e.g., Huang, 2015).

However, there is a lack of synthetic studies that clearly evaluate the strength and limitations of

different multilevel IRT models for measuring growth. This study aims to introduce the various

longitudinal IRT models, including the longitudinal unidimensional IRT model (L-UIRT),

longitudinal multidimensional IRT model (L-MIRT), and longitudinal higher-order IRT model

(L-HO-IRT), which cover a broad range of applications in education and social science. Following

a comparison of the parameterizations, identification constraints, strengths, and weaknesses of the

different models, a real data example is provided to illustrate the application of different

longitudinal IRT models to model students’ growth trajectories on multiple latent abilities.

Keywords: Item response theory, latent growth curve model, overall ability, domain ability
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On Longitudinal Item Response Theory Models: A Didactic

Introduction

In education, one is often interested in determining student growth. These changes can

sometimes be captured by latent variable models. The latent variables, such as students’ abilities,

are typically measured by binary (or polytomous) responses to items. Item response theory (IRT)

models are useful tools to model the relationship between the categorical outcome variables and

the latent continuous traits. Recent work has extended IRT models to model changes in latent

traits, leading to the family of longitudinal IRT models (e.g., Andersen, 1985; Cai, 2010b; Fischer,

1973, 1976; Huang, 2013; Hsieh, von Eye, & Maier, 2010; McArdle, Grimm, Hamagami, et al.,

2009; Paek, Li, & Park, 2016; von Davier, Xu, & Carstensen, 2011; Wang, Kohli, & Henn, 2016;

Wilson, Zheng, & McGuire, 2012). Within this family, models differ mainly in the following

aspects: (1) the measurement model that implies the factor structure of the primary latent traits

measured repeatedly, which could either be unidimensional, multidimensional (Hsieh, et al.,

2010), or hierarchical (Huang, 2013); (2) the relationship of the latent traits over time, which

could either be captured by a completely unstructured covariance matrix (Andrade & Tavares,

2005; Cai, 2010b; Paek, et al., 2016), or linear/nonlinear change patterns via the latent growth

curve models (LGC; Bollen & Curran, 2006; Duncan, Duncan, & Strycker, 2006); and (3) whether

nuisance factors are in place to account for the dependency of the same items administered over

time (e.g., two-tier model, Cai, 2010b; Paek, 2016; Wang, et al., 2016).

Due to the well-known connection between IRT and categorical factor analysis (e.g., Takane

& de Leeuw, 1987), longitudinal IRT models can also be discussed in structural equation

modeling terms. However, IRT offers two conceptual advantages: (1) assuming item (or anchor

item) parameters are the same over time to ensure longitudinal invariance of the lowest-order

traits; and (2) incorporating guessing parameters into the functional form of the model.

Different forms of longitudinal IRT models were proposed by different groups of researchers,

and they have all been individually demonstrated to work well; however, few studies have

explored the connections among the models nor the strengths and limitations of each of them.

Our goal here is to capitalize on the shared features and distinctions among various longitudinal
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IRT models to provide practitioners with coherent guidelines about the conditions under which

each model could be applied and/or should be preferred.

Three specific types of models will be the focus of discussion. In order of complexity, these

models include the longitudinal unidimensional IRT model (L-UIRT; Wang, et al., 2016; Wilson,

et al., 2012), longitudinal multidimensional IRT model (L-MIRT; Hsieh, et al., 2010), and

longitudinal higher-order IRT model (L-HO-IRT; Huang, 2013). All of these models are variations

of the general LGC model and the respective measurement model: the undimensional IRT model

assumes that a single latent trait is measured by all the items; multidimensional IRT models posit

that item responses are probabilistically determined by multiple, usually correlated, latent traits;

the higher-order IRT models (de la Torre & Song, 2009; Sheng & Wikle, 2008) capture the

hierarchical nature of factor structure (e.g., Huang & Wang, 2014; Sawaki, Stricker, & Oranje,

2009), whereby a general factor (such as math aptitude) informs domain-specific factors (such as

algebra, geometry, calculus, or subsets thereof). These three models were selected to cover a

majority of practical applications. Moreover, LGC models were chosen over an unstructured

covariance matrix because LGC results in both group level and individual-level growth

trajectories, which are often useful for interpreting data patterns. On the other hand, LGC

introduces additional latent variables (i.e., individual intercepts and slopes) that complicates

model identification constraints and requires additional guidelines for model estimation. Note

that the longitudinal MIRT model with unstructured covaraince matrix of θ over time is discussed

in detail in Paek et al. (2016).

In the remaining sections, we introduce the three models and explain when each model

could be applied. For each model, we describe identification constraints, which can be different

depending on whether some items have pre-calibrated parameters. After determining the

identification requirements, we are then ready to estimate the models. Estimation presents

various challenges, and we describe the available estimation methods, complications due to

high-dimensionality, and possible solutions. We finally illustrate the models with a real data

example.
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Longitudinal IRT Models

Longitudinal UIRT Model

If only one primary latent trait is measured over time, then the simplest model, the L-UIRT

model, can be applied. Let θi denote the T -by-1 vector of the unidimensional trait for person i

across T time points. Assume there are p fixed (denoted as β) and q random (denoted as νi)

effects explaining the growth pattern of θ. Then the latent growth curve model on θi can be

written in a general form as follows

θi = Xβ +Zνi + δi. (1)

In Equation (1), X and Z are the T -by-p and T -by-q design matrices for the fixed effects

and random effects, respectively. In a simple LGC model with only random intercepts and

random slopes, p = q = 2 and X = Z =



1 0

1 1
...

...

1 T − 1


. δi is a T -by-1 vector of residuals. The

random effects are often assumed to follow a multivariate normal distribution with a mean of 0’s,

and a covariance matrix of Σν . Note the number of measurement occasions, T , can be different

for each person in the LGC model, allowing for missing data by design. For simplicity, we keep T

the same across persons in this paper.

For a simple linear growth model with a a single person-specific intercept and slope, we can

rewrite Equation (1) as

θti = π0i + π1i × (t− 1) + δti , (2)

where π0i and π1i are the individual intercept and slope parameters. The individual

intercepts/slopes can be further written as deviations from an overall intercept (β0) and slope

(β1) as π0i = β0 + ν0i and π1i = β1 + ν1i.

The latent variable described by Equation (2), θti , can be measured by responses to

assessment items. Assuming that responses are binary, one can model the probability of correctly

responding to any item given a particular value of the latent variable with the two-parameter
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logistic model (2PL). The 2PL defines the probability of examinee i correctly responding to item

j by the following item response function (IRF):

Pj(θti) = Pr(Y t
ij = 1|θti , atj , btj) = 1

1 + exp[−atj(θti − btj)]
, (3)

where atj and btj refer to discrimination and difficulty parameters for item j administered at time

t. This notation is flexible enough to accommodate item sets varying across time.

Figure 1 shows an illustrative path diagram of the longitudinal UIRT model with three

hypothetical time points and three items per time point.

Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33

θ1 θ2 θ3

π0 π1

1

1

1

1 1 2

β0 β1

σπ0π1σ2
ν0

σ2
ν1

Figure 1 . A path diagram for the longitudinal unidimensional IRT model with three items per
time point, and three time points. π0 represents the random intercept parameter per person,
whereas π1 represents the random linear slope parameter per person. β0 and β1 are the
population means of π0 and π1, respectively.

Many large-scale educational surveys have primary measurements that differ from one

occasion to another (Edwards & Wirth, 2009; McArdle, Grimm, Hamagami, Bowles, & Meredith,

2009). Yet, to establish a common scale, one must either have a common set of anchor items that

is shared across time or sets of anchor items that already have parameters pre-calibrated and put

on a common scale (e.g., Wang, et al., 2016). Kolen and Brennan (2004) recommended that

assessments should have at least 20% of items to anchor the parameters to the common scale. If

enough items are linked across time, and assuming no item parameter drift, then assessments

with unknown item parameters require some model identifiability constraints to be imposed.
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Constraints are required to fix the mean and variance of the latent variable (ξ) at one time point

(commonly t = 1). Given this constraint, the scale of ξ at the remaining time points will then be

determined through the linking items. These constraints include

1. All of the residuals having mean 0 (i.e., E(δti) = 0 for all t = 1, . . . , T ). This is a typical

assumption in parametric regression analysis.

2. The mean of the person-specific intercept parameter being set to 0 (i.e., µπ0i = β0 = 0). The

purpose of this assumption is to fix the mean of θ at t = 1 to 0.

3. The residual variance at the first time point being fixed to be a constant (i.e., σ2
δ

(1)
i

= c1,

where c1 is some specified constraint). This constraint indirectly fixes the variance of θ at

t = 1.

Note that after imposing a growth curve structure on θ, θ becomes an endogenous variable

in Equations (1) and (2). Hence, instead of directly fixing the mean and variance of θ (as is often

desired), most SEM software packages (such as Mplus) only allow fixing its intercept and the

residual variance. The value of c1 is arbitrary and results in the variance of θ at t = 1 becoming

the sum of the intercept variance (i.e., [Σu](1,1)) and c1. When anchor items are pre-calibrated

with known parameters, then only the first constraint is necessary to identify the model.

Longitudinal MIRT Model

As a multivariate extension of the L-UIRT model, the L-MIRT model combines the MIRT

model with the associative latent growth curve model. The earliest version of the L-MIRT model

was proposed by McArdle (1988) and called the “curve of factors model” or “CUFFS”. The

CUFFS model was developed for multiple, correlated latent traits being tracked over time. For

instance, the National Educational Longitudinal Study (NELS: 88) tracked students’ academic

performance across three measurement occasions on four correlated cognitive scales:

mathematics, reading, science, and social studies. In this case, the L-MIRT instead of L-UIRT

can better recover the group-level and individual-level growth trajectories by considering all

related information. Please note that name “L-MIRT” instead of “CUFFS” is used throughout

the didactic for consistency with the other models’ names.
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Let θi = (θ1
i1, . . . , θ

1
iK , . . . , θ

T
i1, . . . , θ

T
iK)′ be a KT × 1 vector where T denotes the number of

time points and K denotes the number of correlated latent traits (i.e., dimensions) measured at

each time point. Assume again that there are p fixed and q random effects per dimension. Then

the general multivariate latent growth curve model can be written as

θi = Xβ +Zνi + δi. (4)

Similar to the notations in Equation (1), X and Z are the KT ×Kp and KT ×Kq design

matrices. The fixed effect, β, is a Kp× 1 vector, which is arranged in the following order: (1) the

K intercepts; (2) the K slopes for the first fixed covariate; (3) the K slopes for the second fixed

covariate, etc., until (p) the K slopes for the (p− 1)th fixed covariate. This can be written in an

equation as β = (β01, β02, . . . , β0K , β11, β12, . . . , β1k, . . . , β(p−1)1, . . . , β(p−1)K)′

Similarly, νi is a Kp× 1 vector of random effects with a covariance matrix represented by

Σν . Often, Σν is assumed to be a full matrix, which allows random intercepts and slopes to be

correlated within and across all domains. Finally, the residuals of θi are represented by

δi = (δ1
i1, . . . , δ

1
iK , . . . , δ

T
i1, . . . , δ

T
iK)′, a KT × 1 random vector. The covariance matrix of δi, Σδ, is

often assumed to be diagonal and have the following structure



Σ1 · · · · · · 0

0 Σ2 · · · 0
...

... . . . ...

0 · · · · · · ΣT


KT×KT

,

where Σt = diag(σ2
1, σ

2
2, . . . , σ

2
K) and Σδ has T such diagonal blocks.

To be consistent with the description of the L-UIRT model, assume that each domain-level

latent trait follows a simple linear trajectory without any additional covariates, which is

analogous to the assumption made in the preceeding section. Then p = q = 2. If T = 4, then both
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X and Z take the form of



IK 0IK

IK 1IK

IK 2IK

IK 3IK


, where IK is the K ×K identity matrix. If nonlinear

growth trajectories are considered, such as a quadratic effect of time, then X and Z would need

to be updated with additional columns to account for these effects.

We can also rewrite the model by expanding Equation (4) as follows:

θtik = πi0k + πi1k × (t− 1) + δtik, (5)

where πi0k and πi1k denote the individual intercept and slope parameters for person i on domain

k. As before, the individual intercepts/slopes can be further written as deviations from an overall

intercept on domain k (β0k) and slope on domain k (β1k), or

πi0k = β0k + νi0k (6)

πi1k = β1k + νi1k. (7)

The L-MIRT item response function takes the form of:

Pj(θti) = Pr(Y t
ij = 1|θti, atj , btj) = 1

1 + exp[−(atj)Tθ
t
i + btj ]

, (8)

where atj is a vector of discrimination parameters for item j at time t, and “T” denotes transpose.

This equation is general enough to include both within-item and between-item

multidimensionality structures (Recakase, 2009). Figure 2 provides an illustrative path diagram

for a L-MIRT model with three measurement occasions, two domains per measurement occasions,

and three items per domain. This path diagram only illustrates between-item multidimensionality.

As in the L-UIRT model, items can differ across time, as reflected by the superscript “t” on

item parameters in Equation (8), but anchor items must still be embedded in the item parameter

sets to link the scale. Because each domain has a potentially unique scale, anchor items must load

on every domain so that the scale of θik is linked across time for all k = 1, . . . ,K. As in the
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unidimensional case, if enough items are linked across time but all item parameters are unknown,

then constraints are required to determine the scale of θik for k = 1, . . . ,K. These constraints are

similar to those for the L-UIRT model and include

1. All of the residuals having mean 0 (i.e., E(δtik) = 0 for all t = 1, . . . , T and k = 1, . . . ,K).

2. The mean of the person-specific intercept parameters being set to 0 (i.e., µπ0ik = β0k = 0 for

all k = 1, . . . ,K). The purpose of this assumption is to fix the mean of θtik at t = 1 to 0 for

all k = 1, . . .K.

3. The residual variances at the first time point being set to a constant (i.e., σ2
δ1
ik

= c1k,

k = 1, ...,K). As in the unidimensional case, fixing the variance of θtik at t = 1 (for all k)

fixes the variances of θtik for the remaining time via the linking items. Moreover, θtik is

endogenous to the model, so that the variance of θtik can only be constrained via its residual

variance after partialing out the exogenous fixed and random effects.

As before, when anchor items are pre-calibrated with known parameters, only the first constraint

must be specified to identify the model.

Longitudinal HO-IRT Model

Hierarchical factor structures often emerge in the social sciences to represent a latent

construct of interest, such as intelligence (Golay & Lecerf, 2011), cognitive ability (Murray &

Johnson, 2013), or personality (DeYoung, 2006). General factors are often comprised of several

highly related specific factors (a.k.a., first-order factors), each of which is measured by multiple

indicators (usually referred to as items). For example, in many educational assessments one is

often required to report both overall proficiency for accountability purposes as well as

domain-specific proficiency for diagnostic purposes. To this end, the HO-IRT model was

developed by introducing a higher-order ability (de la Torre & Song, 2009; de la Torre & Hong,

2010) that relates to each of the first-order abilities. The HO-IRT model contains two levels: (1) a

link between a single overall latent trait and one of several domain latent traits; and (2) a

probabilistic relationship between each domain latent trait and items designed to measure that
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Y11 Y21 Y31 Y41 Y51 Y61 Y12 Y22 Y32 Y42 Y52 Y62 Y13 Y23 Y33 Y43 Y53 Y63

θ11 θ12 θ21 θ22 θ31 θ32

π01 π11 π02 π12

1

β01
β11 β02

β12

1

1

10 1
2

1
1

10
1 2

σ2
δ σ2

δ
σ2
δ σ2

δ

σ2
δ σ2

δ

σ2
ν01

σ2
ν11 σ2

ν02 σ2
ν12

Figure 2 . A path diagram for the longitudinal multidimensional IRT model with three items per
domain-level trait, two domain-level traits per time point, and three time points. π01 and π02
represent the random intercept parameters per person for both domains, whereas π11 and π12
represent the random linear slope parameters per person. β01, β12, β11 and β12 are the population
means of π01, π02, π11, and π12 respectively.

domain. Specifically, let θ represent the domain latent trait underlying responses to test items,

and denote ξ as the higher-order trait. Then one can hypothesize that

θik = λkξi + εik, (9)

where ξi is the overall ability of examinee i, θik represents domain-specific ability k ∈ {1, . . . ,K}

for examinee i , λk indicates the relationship between domain-specific ability k and overall ability,

and εik is a disturbance term that can be interpreted as the domain-specific component of the

ability not explainable by ξi. According to de la Torre and Song (2009), the residuals in Equation

(9) are usually assumed uncorrelated across domains, which results in εi (containing all of the

εiks) having a diagonal covariance matrix. Note that the variance of εik is the unique variance of

the first-order factor that is not shared by the common second-order factor. At a lower level, the

probability of examinee i correctly responding to item j on domain k is defined by the same item

response function (IRF) in Equation (3) except replacing ξi with θik. As a result, The IRF in

Equation (3) implies between-item multidimensionality which is often assumed in the HO-IRT
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models (e.g., de la Torre & Song, 2009; Wang, 2014). Other measurement models could also be

considered based on the properties of the test.

To extend the HO-IRT model across T time points, assume the second-order factor (i.e.,

overall ability) follows the LGC model, as in Equation (1). Then the domain-specific ability for

person i at time t would also be predicted to systematically change over time (Huang, 2013, 2015)

as follows:

θi = λ(Xβ +Zνi + δi) + εi. (10)

Equation (10) can be further understood by expanding it using a scalar equation. That is, given

Equations (6) and (7), a domain-specific ability for person i at time-point t, θtik, would also follow

a linear change over time,

θtik = λkξ
t
i + εtik = λk(π0i + π1i × (t− 1) + δti) + εtik

= λkπ0i + λkπ1i × (t− 1) + (λkδti + εtik)

= ζ0ki + ζ1ki × (t− 1) + υtik. (11)

Notably, Equation (11) implies that the loading of the domain-specific factors on the overall

factor remains the same over time, as indicated by the lack of a superscript t on λk. By assuming

invariance of the factor structure, Equation (11) ensures that the lower-order factors carry the

same meaning over time, which fulfills the “longitudinal measurement invariance” property

(Chen, Sousa, & West, 2005; Liu, Millsap, West, et al., 2016). Figure 3 provides an illustrative

path diagram of the L-HO-IRT model, assuming three time points, two domain-specific abilities

per time point, and three items measuring each domain-specific ability.

As shown in Equations (5) and (11), the L-HO-IRT model is nested within the L-MIRT

model. This is because the L-MIRT model allows for separate, potentially unrelated, individual

intercept and slope parameters across each dimension (i.e., πi0k and πi1k). Conversely, the

L-HO-IRT model restricts the domain-level intercept and slope parameters to take the

predetermined structure of λkπi0 and λkπi1 due to the functional form of the model.

Assuming either the same sets of items are repeatedly administered or that the test includes

shared items between adjacent time points for all domains, the minimum model identifiability
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θ
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1 θ

(1)
2 θ
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(3)
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ξ(1) ξ(2) ξ(3)

π0 π1

1

λ1 λ2 λ1 λ2 λ1 λ2

1
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σπ0π1

σ2
ε1 σ2

ε2 σ2
ε1 σ2

ε2 σ2
ε1 σ2

ε2

σ2
δ

σ2
δ

σ2
δ

σ2
ν0 σ2
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Figure 3 . A path diagram for the longitudinal, higher-order IRT model with three items per
domain-level trait, two domain-level traits, and three time points. π0 and π1 represent the
random intercept and random linear slope parameters per person. β0 and β1 are the population
means of π0 and π1, respectively.

constraints include:

1. All of the residuals having mean 0 (i.e., E(δti) = 0 for all t = 1, . . . , T ).

2. The mean of the person-specific intercept parameters being set to 0 (i.e., µπi0 = β0). The

purpose of this constraint is to specify the location of ξt at t = 1.

3. All of the residuals in the measurement model having mean 0 (i.e., E(εtik) = 0 for all

k = 1, . . . ,K and t = 1, . . . , T ) in Equation (9). This assumption is typical for a factor

regression model and made in de la Torre & Song (2009).

4. The residual variances at the first time point being set to a constant. (i.e., σ2
ε1
ik

= c1
k where

c1
k is a user-specified constant). This constraint is necessary to establish the scale of the θ’s

in the model. Justification for this constraint is similar to justification for the similar

constraint in the L-UIRT and L-MIRT models and is due to θti being endogenous to the

model, so that its variance can only be fixed indirectly by setting its residual variance. Only

the variance at a single time point needs to be fixed, as the variance of θti at the remaining



LONGITUDINAL IRT MODELS 14

time points are determined via the linking items.

5. One of the loading parameters, λk for some some k (k = 1, . . . ,K) being set to a constant,

assuming that λk is invariant over time. The remaining (K − 1) loading parameters are

freely estimable.

The first two constraints are essentially the same as the first two constraints for both the

L-UIRT model and the L-MIRT model, described earlier. The remaining constraints are unique to

the L-HO-IRT model. The last constraint is similar to the “reference indicator” constraint in

factor analysis. That is, the variance of a factor can be determined by fixing the loading of one

marker indicator. Here, the “marker indicator” is one of the first-order factors, θik for some k

(k = 1, . . . ,K), and the “factor” is ξi. Readers of de la Torre and Hong (2010) may notice that

they imposed a different constraint for the same purpose, namely

var(εtik) = 1− λ2
k. (12)

They argued that the variance of θik is typically assumed to be 1, and the assumption from

Equation (12) results in a variance of ξi also assumed to be 1. Thus, by way of this constraint,

both the first-order and second-order factors would be on the same scale. The motivation of de la

Torre and Hong (2010) are not relevant to our current discussion, as the variance of θik is not

assumed to be a constant over time (and might have good reason not to be given the type of

change observed). If requiring standardized loading parameters, one could calculate a simple

linear transformation of λk, that is λ?k = λk ×
σξt

σ
θt
k

. Moreover, in Mplus, the equality constraints in

(12) can only be specified with maximum likelihood estimation (MLE) but not with the Bayesian

estimation option. Note that when anchor items are pre-calibrated with known parameters, then

only the first, third, and last constraints are necessary to identify the model.

Applications of the Models

Applying one of the above models versus another depends mostly on the hypothesized

factor structure of the latent traits. Higher-order models are often applicable in contexts where a

measurement instrument assesses several related constructs that can be accounted for by one or
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more underlying second-order factors (Chen, et al., 2006). For instance, a common scale to

measure “quality of life” is composed of four subscales that each presume to measure a distinct

first-order factor: mental health, cognition, vitality, and health worry (Chen et al., 2006). The

covariance between each pair of first-order factors can be explained by a higher-order factor, which

is usually called “global quality of life.” Similarly, educational measures are often constructed to

assess several, separate but correlated, content domains that can be partially explained by a more

general ability. For instance, a mathematics test may have items measuring numerical

computation skills and data analysis skills (Reckase, 2009, p. 232). Both of these are examples of

content-based multidimensionality rather than strict construct-based multidimensionality.

In practice, one cannot typically distinguish between content multidimensionality and

construct multidimensionality because content-based subscales often measure distinct constructs.

Yet certain content-based domains sometimes have exceedingly high correlations, implying that

these domains essentially measure the same skill or construct (Reckase, 2009). In cases like these,

one should always provide evidence that combining domains makes substantive sense or yields a

better fit than keeping those domains separate.

Although a correlated-factor MIRT model will always fit data generated from the

higher-order IRT model, the higher-order model has at least four advantages for being preferred

in practice: as compared with the correlated-factor MIRT model, the HO-IRT model (1)

parsimoniously explains the covariance between lower-order factors (Gustafsson & Balke, 1993;

Rindskopf & Rose, 1988); (2) separates the variance in the lower-order factors shared by the

common higher order factor from the unique variance of the lower-order factors; (3) simplifies

model estimation due to the exploitation of the dimension reduction technique (as described in

the next section); and (4) allows for potential construct shifts over time.

To elaborate on the last point, assume teachers want to track students’ ability in a general

subject area, such as math knowledge. If math knowledge is a unidimensional trait, it can be

measured directly by a set of items, and if the teacher is not interested in measuring any specific

sub-areas of mathematics, then the L-UIRT model is sufficient. However, math knowledge might

relate to a number of specific content areas that teachers might also wish to track. For example,

Table 1 presents the content coverage of the mathematics common core domains across five
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domains. The domains (such as Domain 5 “Geometry” and Domain 4 “Measurement and Data”)

are expected to be taught and developed in every grade from Kindergarten-4. Student growth in

these domains can be tracked across all five grades. However, the required content coverage shifts

from grade to grade, and many domains only appear in limited grades. For instance, Domain 1

(“Counting and Cardinality”) is expected to be assessed only in Kindergarden, whereas Domain 6

(“Numbers and Operations-Fractions”) does not emerge until Grade 3. In these cases, the

L-MIRT model and L-UIRT model overlook crucial details. In particular, the longitudinal MIRT

model (Hsieh, et al., 2010) essentially assumes a constant set of traits measured over time. For

this relatively straightforward example, the domains are designed to change over time.

However, when indeed the same of domains are measured overtime, the L-MIRT model is

preferred because the L-HO-IRT model is parametrically more restricted than the L-MIRT model.

That is, any growth patterns in the lower-level traits that can be captured with the L-HO-IRT

model can ultimately be captured with the L-MIRT model. Yet if the multidimensional

(lower-level) constructs each change differently over time, then the L-HO-IRT model would no

longer fit the data, and one should use the L-MIRT model. For instance, if certain domain-level

traits grow linearly, whereas others grow in a piecewise fashion, then one should no longer use the

L-HO-IRT model due to the restrictions implicit in Equation (10). On the other hand, the

L-MIRT model can handle different growth patterns if needed.

When assessing change over time, one must consider whether the measures retain

measurement invariance. Often, practitioners use the exact same scale on multiple occasions.

This practice can ensure that identical constructs are continuously assessed and that the metric of

measurement remains the same over time. However, out of necessity, scales often differ across

repeated measurements due to the need for “developmentally appropriate measures” (Widaman,

Ferrer, & Conger, 2010). Adjusting the scale to consider the typical range of traits over repeated

measurements can help avoid ceiling and floor effects (Embretson, 2006, 2007; May &

Nicewander, 1998).

Determining whether the same construct, measured by multiple indicators, has the same

meaning and metric over time falls under the rubric of measurement invariance (Widaman et al.,

2010), and is often referred to, especially in a longitudinal setting, as longitudinal invariance. The
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factorial invariance of longitudinal measures is paramount in evaluating the change in behavior

over time (Meredith & Tisak, 1990; McArdle, 2001; McArdle & Hamagami, 2001; Widaman &

Reise, 1997). Using the same set of items, or a set of anchor items (Grimm et al., 2013) partially

satisfies longitudinal invariance. A thorough examination of longitudinal invariance is beyond the

scope of this article. Interested readers can refer to Teresi (2006), Isiordia and Ferrer (2018), Liu,

Millsap, West, et al. (2016) for details regarding invariance assumptions of L-UIRT, L-MIRT (i.e.,

CUFFS), and L-HO-IRT, respectively.



Table 1
Mathematics common core domains by grade (K-4)

Kindergarten Grade 1 Grade 2 Grade 3 Grade 4
Domain 1 Counting and Cardinality
Domain 2 Operations and Algebraic thinking Operations and Algebraic thinking Operations and Algebraic thinking Operations and Algebraic thinking Operations and Algebraic thinking
Domain 3 Number and Operations in Base 10 Number and Operations in Base 10 Number and Operations in Base 10 Number and Operations in Base 10 Number and Operations in Base 10
Domain 4 Measurement and Data Measurement and Data Measurement and Data Measurement and Data Measurement and Data
Domain 5 Geometry Geometry Geometry Geometry Geometry
Domain 6 Number and Operations-Fractions Number and Operations-Fractions
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Model Estimation

Within the general framework of structural equation modeling (SEM), the longitudinal IRT

models can be viewed as a multilevel latent growth curve model with the lowest level represented

by categorical indicators. Unsurprisingly, the longitudinal IRT models can also be motivated from

the framework of generalized linear models (McCullagh & Nelder, 1989), a conceptualization

favored within biostatistics. The most common methods for estimating multilevel models are

based on integrating the likelihood over the distribution of random effects, which is often referred

to as marginal likelihood estimation. For instance, in the L-HO-IRT model, the overall and

domain-specific latent abilities as well as the latent intercepts and slopes represent the random

effects over which to integrate. Because analytical integrals often do not exist for these types of

models, researchers frequently adopt one of two classes of methods. One could either approximate

the integrand analytically or evaluate the integral via numerical approximation. The first

approach includes Laplace’s method of linearizing the integrand via a sixth-order Taylor series

approximation (called ‘Laplace 6’ in Raudenbush, Yang & Yosef, 2000) as well as quasi-likelihood

methods such as Marginal Quasi-Likelihood (MQL; Goldstein, 1991; Goldstein & Rasbasch, 1996)

and Penalized Quasi Likelihood (PQL; Breslow & Clayton, 1993; Laird, 1978). Because the

performance of PQL and MQL depends on the validity of a normal approximation, these methods

tend to perform poorly when the observed data are markedly non-normal (Rodriguez, &

Goldman, 1995; Tuerlinckx, Rijmen, Verbeke, & Paul De Boeck, 2006) and are thus typically not

recommended for use in IRT models with binary responses. The second approach includes ML

using Gauss-Hermite quadrature, adaptive quadrature, and simulation methods (Bauer & Sterba,

2011), such as the Monte Carlo EM algorithm (Wang & Xu, 2015).

However, ML estimation via the EM-algorithm is known to converge slowly in many

applications (e.g., Meng & van Dyk, 1997) and is computationally intensive when the number of

latent variables is large. Bayesian estimation using Markov chain Monte Carlo (MCMC) with

diffuse (or noninformative) priors (Patz & Junker, 1999) is an alternative to EM (Huang, 2013;

Wang & Nydick, 2015) and is usually preferred for complex models.

All of the above estimation methods are based on full-information, in that the likelihood is

constructed directly from the raw response pattern. Alternatively, one could adopt limited
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information estimation methods, such as modified weighted least squares (WLS) estimation.

Rather than basing the likelihood on the complete response pattern, modified WLS estimates

model parameters via the first four moments of the response contingency table. By avoiding the

time-consuming numerical integration or sampling steps of the full-information methods, WLS

leads to much faster convergence. However, WLS is known to yield inaccurate estimation with

small sample sizes or large amounts of missing data (e.g., Forero & Maydeu-Olivares, 2009).

Moreover, the parameter estimates from WLS are not as efficient as a full-information method

(Muthen & Asparouhov, 2015). Given these limitations, WLS is not discussed further in this

paper.

In the following subsections, we describe estimating the longitudinal IRT models in Mplus

with ML or MCMC methods. Mplus software was chosen due to being widely used in social

science research. Other IRT estimation software packages, such as flexMIRT (Cai, 2017; see Paek

et al. 2016, for details on how to estimate similar models to those described in this paper), or

general-purpose estimation packages, such as WinBUGS (Lunn, Thomas, Best, & Spiegelhalter,

2000), should also be able to recover longitudinal IRT-based model parameters. Interested readers

could refer to Curtis (2010) or Isiordia and Ferrer (2018), which present BUGS code and R code

(using the “lavaan” package, see Rosseel, 2012), respectively, for estimating a subset of

longitudinal IRT models. Details of estimating longitudinal IRT models using WLS are explained

in Wang et al. (2016).

Maximum likelihood estimation

When using Mplus, one must specify the model estimation method in the ANALYSIS section

of the input script. If estimating IRT-based item parameters with maximum likelihood

estimation, include the following ANALYSIS statement:

ANALYSIS: TYPE = GENERAL;
ESTIMATOR = MLR;
LINK = LOGIT;
INTEGRATION = MONTECARLO;

As indicated in the last line of the previous statement, we recommend using Mplus’s MONTECARLO
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integration routine for the numeric integration. Without including the INTEGRATION line, Mplus

would default to use rectangular (trapezoid) numerical integration with either 15 adaptive

quadrature points per dimension, or 30 to 50 non-adaptive quadrature points per dimension

(Chapter 14, Mplus User Guide). Although adaptive numeric integration is computationally

faster, if the data have outliers or non-normally distributed latent traits, it may yield unstable

results. If estimating a model with 1-3 dimensions of integration, the default quadrature-based

numerical integration algorithm usually results in precise estimates. Conversely, MONTECARLO

integration does not yield as accurate estimates of parameters for low dimensions of integration

but is much more efficient for higher dimensional integration.

Table 2 illustrates the dimensions of numeric integration for each of the three models with

values in parentheses assuming that T = 4, K = 5, and q = 2. As shown in Table 2, the number

of continuous latent variable per model (the second column in Table 2) is simply the number of

latent factors (including the first-order and second-order latent traits) plus the number of random

effects (the person-specific intercepts and slopes). The dimensions of integration (the third

column in Table 2) include only those factors that have categorical indicators (the θs) as opposed

to higher-level factors (the ξs) or random effects. According to the Mplus User Guide (p. 527),

closed form solutions may exist for integrating out latent factors with continuous indicators, such

as the ξs or random effects, so that the numerical integration approximation is no longer needed.

Nonetheless, the number of dimensions of integration for all three longitudinal models is

prohibitively large.

The right-most column in Table 2 indicates the dimensions of integration if using an

analytic dimension reduction technique. Analytic dimension reduction is often used to rearrange

terms in the marginal likelihood integral to yield a series of integrals, each of much lower

dimension than the original integral (Gibbons & Hedeker, 1992; Rijmen, Vansteelandt, & de

Boeck, 2008; Cai, Yang, & Hansen, 2011). Applying a dimension reduction technique to the

L-UIRT model, rewrite Equation (3) as

1
1 + exp[−atj(θti − btj)]

= 1
1 + exp[−atj(π0i + π1i × (t− 1) + δti − btj)]

. (13)

If assuming that δti ’s are uncorrelated across pairs of time points, then one need only integrate out
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π0i, π1i, and δti , resulting in a 3-dimensional integral, for a given item (Paek, et al., 2016). The

same arguments lead to a similar dimension reduction solution to the L-MIRT model. The results

for the L-MIRT model in Table 2 is based on the assumption that the residual covariance matrix

of δi is a diagonal matrix 1.

The L-HO-IRT model has a different dimension reduction solution given the addition of the

higher-level trait. First, write the HO-IRT item response function as

1
1 + exp[−atjk(θtik − btjk)] = 1

1 + exp{−atjk [λk(π0i + π1i × (t− 1) + δti) + εtik − btjk ]} , (14)

where ajk and bjk denote item parameters for item j measuring domain k. In Equation (14), the

only additional random effect to integrate out of the likelihood equation is εtik. Because all εtik’s

are assumed uncorrelated across time, then generalized dimension reduction yields a

4-dimensional integral (π0i, π1i, and δti as before, as well as εtik). Note that this dimension

reduction technique can only be applied if the residuals from the growth curve model, δti , are

uncorrelated across time. If estimating models with correlated residuals (such as an

autoregressive model), this dimension reduction technique can no longer be applied.

Table 2
Number of continuous dimensions and dimensions of numerical integration for different models
and methods (T denotes the number of time points, K denotes the number of lower-order latent
traits, q denotes the number of random effects)

Models num. of continuous
latent variables

dimensions of numerical
integration (Mplus default)

dimensions of numerical integration
(analytic dimension reduction)

L-UIRT T + q (6) T (4) q + 1 (3)
L-MIRT T ×K + q ×K (30) T ×K (20) q ×K + 1 (11)
L-HO-IRT T ×K + T + q (26) T ×K (20) q + 2 (4)

Advantages of estimating parameters using the EM algorithm, as compared with Bayesian

methods, in Mplus include: (1) being able to estimate the three-parameter logistic (3PL) model

rather than only being able to estimate one or two parameter normal ogive models; (2) providing

1 If, on the other hand, the residual covariance matrix of δi is a block diagonal matrix, allowing the residuals from
different latent traits to correlate at a given time point, then the dimensions of numerical integration would be
(q + 1) ×K.
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comparative model fit indices such as AIC and BIC; and (3) being able to impose equality

constraints on model parameters. Note that these limitations of Bayesian methods are not

necessarily inherent to the methods themselves, only to the application of those methods in

Mplus. Due to the high-dimensional integration, we have had more success estimating the

longitudinal IRT models with the MCMC option in Mplus. Researchers and practitioners should

always keep in mind complexity and feasibility when choosing a model and corresponding

estimation algorithm.

Markov chain Monte Carlo

If estimating IRT-based item parameters with MCMC, include the following ANALYSIS

statement:

ANALYSIS: ESTIMATOR = BAYES;
CHAINS = 1;
FBITER = 50000;
POINT = MEAN;

In the above statement, the FBITER line denotes the fixed number of iterations for each

Markov chain (i.e., the chain length). If FBITER is not specified, the chain will stop once

convergence is reached with the default convergence criterion being a potential scale reduction

(PSR; Gelman & Rubin, 1992) at or below 1.05 (see Mplus user guide, 1998-2012, p. 640). After

50,000 iterations, POINT = MEAN indicates that the posterior mean will be used as the point

estimate of the model parameters.

The next section provides a real data example of applying Mplus (version 8 used in this

study) to estimate parameters of data that fit the longitudinal IRT model. A corresponding

simulation study, demonstrating parameter recovery of the three longitudinal IRT models, are

included as an online appendix to this paper.

A Real Data Example

The current section applies the three longitudinal IRT models to a real data example. The

purpose of this demonstration is to illustrate the potential application of each model as well as

the information each model provides to researchers and practitioners. For this purpose, we
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adopted and analyzed a series of math assessments that students in one Midwest state took

between 2009 and 2012. These students were assessed in each of grades 3-6 using a five

dimensional, simple-structure test with pre-calibrated item parameters. The five dimensions had

been termed “number and operation”, “geometry and spatial sense”, “data analysis, statistics,

probability”, “measurement”, and “algebra, functions, and patterns”, respectively. Students took

57 items in 2009 (with 23, 9, 7, 11, and 7 items, respectively, measuring each dimension) and 52

items in each of the three subsequent years (with 23, 9, 7, 11, and 7 items, respectively, measuring

each dimension). After initial data cleaning, only N = 327 students had a complete set of mixed

responses (i.e., including both correct and incorrect responses) for sets of items on each dimension

at every time point2.

Due to different sets of items being administered in each year, common-item linking is not

possible. However, pre-calibrated anchor items were embedded within each of the five dimensions

across all four years and are all on the same scale. Because of fixing known anchor items, many of

the identifiability constraints need not be explicitly specified (see the model description section

for additional details). Only λ1 in the L-HO-IRT model must still be specified, and we set λ1 = 1

to fix the scale of ξ. All growth models were assumed to have only random intercepts and slopes

(see the spaghetti plots below for linearity of time on θ and ξ). Moreover, all responses were

assumed to conform to the 2PL IRT model.3 For estimation, a MCMC algorithm was run in

Mplus with a Markov chain length (FBITER) fixed to 30,000 with the first half of the iterations

discarded as burn-in by default. In all cases, the PSR for all model parameters were below 1.03,

implying successful chain convergence.

To evaluate global model fit in Bayesian models with categorical outcome variables, Mplus

provides the Bayesian posterior predictive p-value (Muthén, 2010; Kaplan & Depaoli, 2012). In

our case, the Bayesian p-value for the L-UIRT, L-MIRT, and L-HO-IRT 4 models were estimated

to be .103, .081, and .106, respectively, implying that all three models yielded acceptable global

2 The complete data set is available for download on www.placeholder.com
3 Mplus can estimate 3PL model parameters using only the MMLE/EM algorithm, which becomes exceedingly slow
when the number of integration dimensions is large, such as in the L-MIRT or L-HO-IRT models considered in this
paper.
4 Originally, we ran the model allowing λ2 to λK to differ across time. Relaxing the invariance assumption resulted
in a posterior predictive p-value changed by .001. Because imposing an invariance assumption still yields a p-value
> .05, we decided to base our results and discussion on the invariance model.
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fit. Note that other Bayesian software packages, such as JAGS (Plummer, 2003) provides the

deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linden, 2002) for

model comparison. Mplus does not yet include DIC for models with categorical indicators.

Table 3
Structural model parameter estimates for three different models

Models NP
Fixed effects(
β0 β1

) Random effects(
σ2
π0i

σπ0iπ1i σ2
π1i

)
Others

L-UIRT 275
(
−.653 .472

) (
.081
−.008 .005

)
σ2
δi

=
(
.048 .063 .046 .015

)

L-MIRT 351


−.652 .509
−.633 .428
−.421 .356
−.659 .444
−.795 .524




.145 .014
.255 .039
.267 .038
.169 .042
.120 .017

 σ2
δi

=


.051 .087 .052 .019
.063 .066 .025 .037
.032 .048 .009 .029
.035 .055 .042 .031
.054 .010 .031 .013



L-HO-IRT 299
(
−.702 .514

) (
.102
−.009 .007

) λ =


1?
.768
.734
.882
.935

 σ2
δi

=
(
.052 .071 .061 .015

)

σ2
εi =


.028 .031 .016 .017
.121 .091 .088 .044
.018 .031 .013 .011
.059 .020 .018 .034
.059 .012 .013 .008


1. “np” denotes the number of free parameters in each model.
2. The covariances between random intercepts and random slopes from the L-MIRT model are omitted to
save space because they are between -.01 and .01.
3. “*” denotes a fixed constant.

Table 3 presents the parameter estimates from the three longitudinal IRT models. Because

of fixing λ1 = 1 in the L-HO-IRT model, parameter estimates from this model may not be on the

same scale as those from the L-UIRT and L-MIRT models. Even though parameter estimates are

not strictly comparable across models, we can still make some general statements based on Table

3: (1) the fixed effect of time is positive, implying an increase in average ability over time; (2) the

intercept and slope combined variances (i.e., ZΣνZ
T , where Z is the design matrix defined in

Equation (1), indicating the dependent variable variance explained by random effects) greatly

exceed the residual variance in the growth part of the model (i.e., σ2
δi
), which evidences the linear
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functional form being sufficient to capture the latent growth pattern; (3) the random intercepts

vary more than the random slopes, and there is a moderate negative correlation (of -.3 to -.4)

between random intercepts and random slopes, implying larger differences in initial ability than in

growth rates. This moderate negative correlation between initial state and growth is interesting

and implies that the gap between high and low performing students decreases over time. Even

though one cannot directly compare parameter estimates from the L-MIRT and L-HO-IRT

models, the intercept variances being larger for domains two and three in the L-MIRT model (i.e.,

.255 and .267 in Table 3) is consistent with the λs being relatively lower for these two domains

(i.e., .768 and .734) in the L-HO-IRT model. Thus, estimation patterns persist regardless of lack

of direct comparability of parameter magnitudes.

In contrast to the L-HO-IRT model, the L-UIRT and L-MIRT models can be directly

compared in this case due to anchor items setting the scale for the lower-order traits. From Table

3, one can see that averaging the intercepts and slopes from the L-MIRT model leads to estimates

similar to those from the L-UIRT model. Yet the variance of the intercept and slopes from the

L-MIRT model are much larger, implying that evaluating individual performance at the domain

level leads to higher variability than assuming that responses are all generated from a single,

common trait. That said, if a test is constructed across several domains, considering domain-level

growth patterns may reveal subgroup differences otherwise diminished if assuming responses came

entirely from a unidimensional trait.
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Figure 4 . A spaghetti plot, illustrating the linear trend of ξ (overall-level ability) on math
between grades 3–6 for N = 327 students. The left panel is obtained from the L-HO-IRT model,
and the right panel is from the L-UIRT model. The bolded, slanted line in the center of the
spaghetti depicts the estimated fixed effect of time.

Figure 4 presents a spaghetti plot of the overall ability across time for N = 327 students

using the L-HO-IRT model (left) and the L-UIRT model (right). Unsurprisingly, the lines in the

right panel are slightly closer together than the lines in the left panel, which is consistent with the

results in Table 3 that the variance of the random slopes is slightly higher from the L-HO-IRT

model. Figure 5 presents the spaghetti plot of the domain-specific abilities across time using the

L-HO-IRT model (upper) and the L-MIRT model (lower). As shown in Figure 5, aside from

minor differences, the overall growth lines and the individual growth trajectories from both

models exhibit similar patterns. One anomaly worth mentioning is that the individual growth

curves from the L-HO-IRT model tend to fluctuate quite a bit more than the growth curves from

the L-MIRT model. The L-MIRT model growth curves (for all but k = 1 and k = 4) tend to

follow strict lines. This result is due to where the growth trajectory is imposed. With respect to

the L-HO-IRT model, the growth trajectory is fit to the θ’s only indirectly (due to the θ’s

relationship with ξ) as reflected in Equation (11). Because of this indirect effect, the residual

variance of θ (σ2
υt
ik

= λ2
kσ

2
δti

+ 1− σ2
εt
ik
) could be large, and the individual growth trajectories might

exhibit some departure from a strict line. Conversely, with respect to the L-MIRT model, a

growth line is imposed directly on the individual θ’s (see Equation 5). Due to a small estimated

residual variance in the θ’s (between 0.007 and 0.088), the domain abilities were estimated to be
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close to the trajectory line. Note that the figures reinforce linearity in the average growth pattern

over time, which was implied earlier by comparing the slope/intercept variances to the residual

variances from Table 3.
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Figure 5 . A spaghetti plot, illustrating the linear trend of θ (domain-level ability) on math
between grades 3–6 for N = 327 students. The upper panels are obtained from the L-HO-IRT
model, and the lower panels are from the L-MIRT model. The bolded, slanted line in the center
of the spaghetti depicts the estimated fixed effect of time.

Conclusion

Many teachers, administrators, and policy makers require the measurement of student

growth. Teachers can use estimated growth to modify lesson plans based on strategies of

improvements. Administrators can use estimated growth to examine school performance and help

make budgetary decisions. In either case, one must ensure estimates are accurate across several,

possibly correlated, ability dimensions. Several longitudinal IRT models haven been proposed for

different purposes. These longitudinal IRT models all share the same form and contain two

components: (1) an IRT measurement model for each measurement occasion; and (2) a latent

growth curve (LGC) model imposed on the latent trait, quantifying the intraindividual

developmental trajectories. In this paper, we reviewed three specific types of longitudinal IRT

models with the goal of demonstrating appropriate applications of these models for longitudinal

assessment. We also illustrated fitting different models with a commonly used software package.

Among the three models, the L-UIRT model is the simplest and has been the most
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extensively studied in the literature (e.g., Andersen, 1985; Embreston, 1991, Grimm, et al., 2013;

McArdle, et al., 2009; von Davier, et al., 2011; Wang et al., 2016 Wilson, et al., 2012). In contrast

to the L-UIRT model, which tracks change in a unidimensional latent trait, the L-MIRT model

describes change in multiple, correlated latent traits (see Paek et al., 2016). Compared to models

that directly model change in the lower-level abilities, the L-HO-IRT model includes two unique

features. First, because the HO-IRT model captures the hierarchical nature of learning, the

L-HO-IRT model simultaneously models the growth trajectories of both overall and

domain-specific abilities. Second, as described earlier in the paper, the L-HO-IRT model allows

for a shift in domain coverage over time, as long as one carefully verifies the second-order

longitudinal invariance requirement (e.g., Chen, Sousa, & West, 2005; Liu, et al., 2016). Allowing

for a shift in the domain coverage over time is extremely important in educational measures, as

one typically finds more advanced domains added and basic domains eliminated as students

complete more schooling. Furthermore, a higher-order model allows one to find trends at the

individual, domain level. Domain level information can hint at particular academic subjects that

improve the most over particular grades. For instance, in our real data example, θ1 and θ5 tended

to improve the most over time, and θ3 tended to improve the least (assuming, of course, that the

location and scale across dimensions are comparable). With a longitudinal HO-IRT model, one

can obtain estimates of overall trends as well as delve into individual dimensions underlying

complex assessments.

In terms of model estimation, we provided a thorough discussion of the analytical

dimension reduction techniques that are available to alleviate high-dimensional integration

challenges of marginal maximum likelihood estimation. Even after dimension reduction, the

number of integration dimensions can still be high. In this case, the Metropolis-Hastings Robbins

Monro algorithm (Cai, 2008, 2010) or the MCMC algorithm can be used in lieu of MMLE via

EM. Given that the L-MIRT and L-HO-IRT are less studied in the literature, a simulation study

was conducted to provide a thorough quality-control check on the precision in estimating model

parameters (refer to the online supplementary file for details of the simulation, which evaluated

the recovery of both structural parameters and individual latent traits/growth parameters).

When examining simulation results, all model parameters were adequately recovered, and the

generating model evidenced adequate model fit. Even with the supporting evidence from the
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simulation study, interested users of the L-HO-IRT and L-MIRT models should keep in mind that

both of these models should only be applied when there are sufficient items per domain, otherwise

the domain-level θ’s and the resulting higher-order factors (i.e., ξ and growth parameters) would

not be reliably estimated.

The paper serves as two purposes. First, no prior paper has explicitly documented and

reviewed the three popular longitudinal IRT models as well as their identifiability constraints with

and without known item parameters. Including this information has profound didactic value for

practitioners who wish to apply the models to their own data. Sample Mplus code is provided in

the Appendix for each model for readers’ reference. Second, this paper is the first attempt to

thoroughly compare and demonstrate the applicability of each of the discussed models. Even

though these models can adequately capture changes in typical longitudinal measures, they are by

no means exhaustive. A handful of other longitudinal models exist, such as the two-tier model

(Cai, 2010), in which nuisance factors are introduced to account for residual dependencies

between common items over time, or the item-level-growth-curve model (Paek, et al., 2016), in

which growth rates for different items can differ and therefore be described and examined.

Regardless of chosen model, constructing and estimating growth using longitudinal IRT can

improve the measurement of educational outcomes and, thus, provide educators with tools they

need to better help students learn. Currently available software packages can estimate growth

across a wide variety of measurement models (e.g., 1PL, 2PL, 3PL, unidimensional,

multidimensional, and higher-order) and latent growth curve models (i.e., Equations (1) and (4)).

Interested practitioners should be cognizant of the different estimation methods offered in each of

the programs and to choose the method appropriate for the problem at hand, especially given

complex models with many estimable parameters. For instance, the discussed analytic dimension

reduction technique is only relevant to MML estimation approaches but not to the Bayesian

MCMC estimation approach commonly used to estimate parameters of complex models. Software

packages such as Mplus may not automatically use a given dimension reduction unless the

command file (or source script) is written with dimension reduction in mind. 5. Hence,

understanding the logic of dimension reduction can help with constructing the command file or

5 Please see an example for the HO-IRT model at www.placeholder.com
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script processed by the algorithm and greatly reduce computation time.

Although this didactic offers sufficient technical details for three popular longitudinal IRT

models for researchers and practitioners to use those models in their own research, two relevant

topics were outside the scope of the current discussion. First, LCG models with intrinsically

nonlinear growth patterns were not discussed because this family of models is not currently

included in a majority of software packages for LCG model estimation. An example of this kind

of model is a “piece-wise growth curve model with unknown knots” (e.g., Kohli et al., 2015).

Second, we have not discussed how to evaluate global model fit. Although most SEM software

packages will output one or multiple absolute fit indices, few studies have examined appropriate

cutoffs for these indices in determining adequate fit. Moreover, the DIC that is often used with

MCMC can take different forms. The first-level conditional DIC provided by WinBUGS may not

always provide the best estimates of model fit, whereas a second-level joint DIC might be more

appropriate for multilevel IRT models (Zhang, Tao, & Wang, 2019). A thorough examination of

model fit for longitudinal IRT models is needed to ensure credible conclusions drawn from any

model-based results.
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Appendix: A Simulation Study

Simulation Study

With the primary focus of comparing the three longitudinal IRT models, the current

simulation is designed to assess the precision gain and/or loss in measuring individual growth

when fitting data generated from the L-HO-IRT model with either the longitudinal MIRT or the

longitudinal UIRT models. The L-HO-IRT model is used as the true model because it combines

the key features of both L-MIRT and L-UIRT and, hence, it provides information that both

L-MIRT and L-UIRT purport to estimate. For all simulation conditions, we estimated parameters

with an MCMC algorithm. The number of time points, T , was fixed to be 4 across all conditions.

We kept the number of time points fixed at T = 4 to be consistent with the operational data

presented in the next section. Other constant factors across all conditions included (1) the

simulee sample size fixed at 1,000 (Baker, 1998; de la Torre & Hong, 2010); (2) the number of

dimensions, K, chosen to be 4; and (3) the test length fixed at J = 60 (so that

Jk = J/K = 60/4 = 15 items measured each dimension).

Conditions

We included two manipulated factors in the simulation study. The residual variance of the

growth model, σ2
δ , was specified to be either 0.25 or 0.05. These two residual variances correspond

to an intraclass correlation of 0.67 (for σ2
δ = 0.25) or 0.91 (for σ2

δ = 0.05). One would expect that

a larger residual variance in estimation of the dependent variable (in this case, overall ability or ξ)

would adversely affect the estimation precision of model parameters (Kohli, Hughes, Wang,

Zopluoglu, & Davison, 2015). We also varied the bivariate correlation among the K lower-level

factors to be either 0.3, 0.5, or 0.7. These correlations are consistent with those typically observed

in real data. For instance, Yao (2014) fitted a four-dimensional simple-structure confirmatory

item factor model to ASVAB (Armed Services Vocational Aptitude Battery) data and found the

correlations among four factors varied between 0.3 and 0.7. A higher correlation among factors

should lead to better recovery of overall ability and its growth trajectories. For each of the 6

conditions, we conducted R = 100 replications and aggregated results (using the median rather

than the mean) across the replications.
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Item Parameter Generation

Across all simulations, item parameters were generated according to the IRT model

described in Equation (3). Because Mplus parameterizes the IRT model with thresholds rather

than difficulties, the estimates from Mplus were aJk and dJk , where dJk = aJkbJk . Moreover, due

to simple structure, and because Jk items loaded onto each dimension, the total number of items

would always be J = Jk ×K. Different item parameter sets were generated for every replication

within a condition and then estimated with each of the three models. All item slope parameters

(aJk) were generated to be independent and identically distributed according to the log-normal

distribution with a log-mean of 0 and log-standard deviation of 0.4 (which is approximately a

mean of µa = 1.083 and a standard deviation of σa = 0.451). All item difficulty parameters (bJk)

were generated to be independent and identically distributed according to the normal distribution

with a mean of µb = 0.2 and a standard deviation of σb = 1.3).

Person Parameter Generation

Person parameters were generated as follows. We first simulated a set of linear model

parameters, π0 and π1, and then used the linear parameters to generate higher-order abilities.

The intercept parameter, π0, was generated to be normally distributed with mean of µπ0 = 0.0

and variance of σ2
π0 = 0.5. The slope parameter, π1, was generated to be normally distributed

with mean µπ1 = 0.25 and variance σ2
π1 = 0.01. Given π0i and π1i for person i, higher-order

person parameters were then set to

ξit = π0i + π1i × (t− 1) + δit,

where δit ∼ N(µδ = 0.0, σ2
δ ) with σ2

δ = 0.05 or 0.25. Next, let θ(t)
ik be the ith persons lower-order

ability parameter for dimension k at time point t. Then θ(t)
ik = λξ

(t)
i + ε

(t)
ik , where

ε
(t)
ik ∼ N(µε = 0.0, σ2

ε = 1− λ2). This parameterizations is the same as that described in de la

Torre and Hong (2009). The value of λ were selected to be either
√

0.3,
√

0.5, or
√

0.7. Notice

that in this data generation method, the relationship between the lower-order and higher-order

person parameters were identical across dimensions and not assumed to change over time, simply
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to keep the generation scheme clear without loss of generality. In contrast, when fitting the

model, the estimated loadings were allowed to vary across dimensions, but the relationship

between the higher-order factor and a particular lower-order factor was assumed to not change

over time, ensuring longitudinal invariance.

Model Fitting

For each simulation, we generated a response matrix of size N × (JT ), where each simulee

responded to each item across all time points. The Markov chain length was 10,000 with the first

5,000 iterations treated as burn-in. The chain length was selected such that the Proportion Scale

Reduction (PSR) factor of all model parameters would be close to 1 (and all were well below 1.05).

As described earlier, we fit three models to each generated response. To avoid the need for

post-hoc scale transformation, the model constraints were chosen carefully to closely match the

true values. Specifically, when fitting the L-HO-IRT model, the first-level residual variances

σ2
ε1
ik

= c1
k were fixed at 1−λ2

k (which is consistent with our data generation method). When fitting

the L-MIRT model, the variances of the residuals across all dimensions at time point 1, σ2
δ

(1)
ik

, were

fixed at λ2
kσ

2
δ

(t)
i

+ (1− λ2
k) (which is essentially the variance of υ(t)

ik in Equation ??). When fitting

the L-UIRT model, the variance of the residuals at time point 1 was fixed at σ2
δ

(1)
i

. In each case,

σ2
δ

(1)
i

always took the generating value of either 0.05 or 0.25 as described in the previous section1.

Evaluation Criteria

The evaluation criteria for parameter recovery include the average bias, the Mean Squared

Error (MSE), and the correlation between generated and estimated parameters. We also recorded

the number of converged replications, and only successful replications were included in the final

analysis and all of the tables and graphs in the following sections2.

The reported person parameters depended on the model. When fitting the L-HO-IRT

1 This choice is made for the sake of evaluating parameter recovery. In practice, the value of σ2
δ

(1)
i

can be set at any
constant.
2 Technically, we calculated the MSE using the equation

∑
(γ̂−γ)2

N
, where γ is the desired parameter, which is

estimated by γ̂, and the summation was taken across the entire sample of N simulees. These statistics were then
aggregated, using the median rather than the mean, across the set of 100 replications and then averaged across the
desired conditions.
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model, we reported the estimation precision of both the ξ’s and the θ’s. With respect to the

L-MIRT model, we did not estimate any of the higher-order parameters (the ξ’s), and, thus, only

reported the estimation precision of the θ’s. Finally, when fitting the L-UIRT model, we only

estimated a single unidimensional trait, and, thus, only reported the estimation precision of the

ξ’s (which represents the best guess of that trait). The reported item parameters, in contrast,

were identical for all three models: the recovery of the a’s and b’s parameters were reported and

compared across all of the models.

Finally, we reported the parameter estimates and factor scores as related to the growth part

of the model. In particular, for to the L-HO-IRT model, we reported the estimation precision of

individual intercept and slope parameters with respect to both the higher-order factor, π0i and

π1i, and the domain factors, λkπ0i and λkπ1i. For the longitudinal MIRT model, we only reported

the precision of the individual intercept and slope parameters with respect to the domain factors

(as the higher-order growth part of the model is never estimated), whereas for the longitudinal

UIRT model, we only reported the precision of individual intercept and slope parameters with

respect to the higher-order, general abilities. Table 1 summarizes the parameter of interest for

different models. Note that for the L-MIRT model, both ˆcov(π0i) and ˆcov(π1i) denote the

K-by-K covariance matrices of individual intercepts and individual slopes respectively. Although

the full covariance matrix is estimated, only the diagonal elements need to be compared to the

“true” variances of the individual intercept and slope parameters at the domain level (i.e.,λ2
kσ

2
π0i

and λ2
kσ

2
π1i).

Table 1
Target parameters of interest for different models

True parameters Fitted model
L-HO-IRT L-MIRT L-UIRT

Person ξi, θik ξ̂i, θ̂ik θ̂ik ξ̂i

Individual growth π0i, π1i for ξ
λkπ0i, λkπ1i for θk

π̂0i, π̂1i
λ̂kπ̂0i , λ̂kπ̂1i

π̂k0i, π̂k1i π̂0i, π̂1i

Population growth
β1
λkβ1

σ2
π0i , σ

2
π1i , σ

2
δ

(t)
i

β̂1
λ̂kβ̂1

σ̂2
π0i , σ̂

2
π1i , σ̂

2
δ

(t)
i

β̂k1
ˆcov(π0i), ˆcov(π1i), σ̂2

δ
(t)
ik

β̂1

σ̂2
π0i , σ̂

2
π1i , σ̂

2
δ

(t)
i

Item a, b â, b̂ â, b̂ â, b̂
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Simulation Results

Table 2 summarizes the number of failed (in terms of model convergence) replications (out

of 100) per condition per model. As seen in Table 2, the convergence rate is above 95% across all

cells. The failed replications are mainly due to non-mixed responses for certain items. Using only

the converged conditions, we describe parameter recovery in three subsections. We first explain

how overall and domain abilities were recovered when using each of the three models. We then

explain how the item parameters were recovered. Finally, we explain how the individual growth

parameters were recovered.

Table 2
Number of failed replications per condition per model out of 100 total replications

σ2
δ r Longitudinal HO-IRT Longitudinal MIRT Longitudinal UIRT

0.05 0.3 2 2 2
0.5 2 2 2
0.7 4 3 3

0.25 0.3 0 0 0
0.5 5 5 5
0.7 3 4 3

Overall and Domain Abilities Recovery

Figure 1 displays the bias (top panels), MSE (middle panels), and correlation (bottom

panels) for the three correlation conditions (left panels) and two residual level conditions (right

panels) when comparing L-HO-IRT and L-UIRT estimation recovery on the higher-order factor, ξ.

The purple symbols present the results from the higher-order model, whereas the green symbols

present the results from the unidimensional model. Points within a plot indicate the average bias,

correlation, and MSE for a given person parameter at each of the four time points. Average bias

was calculated by subtracting the true/generated parameters from the estimated parameters,

averaging across all persons, and then taking the median across replications.

When looking at the results from the longitudinal HO-IRT model alone, one can find two,

fairly obvious, trends as pertaining to the conditions presented in Figure 1. First and

unsurprisingly, increasing the correlations among the lower-order factors leads to better recovery
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of the ξ’s, as reflected by the lower average MSE and higher average correlation when comparing

true versus estimated ξ. Second and also consistent with our expectation, having smaller residual

variances yields better recovery of ξ. With respect to the L-HO-IRT model, the bias of the ξ

estimates were fairly close to 0 across all conditions.

Unlike results from the longitudinal HO-IRT model, fitting the longitudinal UIRT model to

HO-IRT data led to worse estimation precision. Unsurprisingly, as shown in the left panels of

Figure 1, an increase in the model-specified correlation between the lower-order traits led to an

concurrent decrease in the bias and MSE of the estimated abilities as well as an increase in the

correlation between estimated and true abilities. This result is to be expected because a higher

correlation between lower-order traits results in a stronger higher-order factor and a test that is

essentially unidimensional. However, contrary to the pattern observed from estimating ξ from the

L-HO-IRT model, the absolute value of bias and MSE actually tended to increase at later time

points when estimating abilities with the L-UIRT model. This outcome is due to errors contained

in the slope parameter estimates propogating through to all ξ estimates when t ≥ 2. The

correlation, however, does not seem to be as sensitive as the bias and MSE as an evaluation

criterion. Unlike the bias and MSE, (1) correlations do not capture any changes or distortion in

the scale of the latent trait, and (2) larger variability in true parameters might yield deceptively

high correlations for larger values of t.

The trend in the left panels (when comparing different true correlations among the domain

abilities) also appear in the right panels (when comparing different specified residual variances).

Interestingly, the L-HO-IRT and L-UIRT models only start to diverge in their estimating

precision of ξ when t ≥ 2. Therefore, the differential precision of the different estimating models

appear to be mainly due to the recovery of the slope parameters. In fact, when the true residual

variance of ξ is large, the bias of the estimated person-specific slope parameters is smaller (see

Tables 4 and 6 for additional details). Ultimately, when the true data is generated from the

longitudinal HO-IRT model, mistakenly fitting the simpler longitudinal UIRT appears to result in

a precision loss in recovering overall abilities, and this loss becomes worse over time. Also this

precision loss is more salient when the correlations among the domain-level abilities are low or

when the residual variances in the true ξ’s are small. A scatterplot of the true versus estimated
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ξ’s (which is not reported here to save space) reveals that fitting the L-UIRT model to HO-IRT

data yielded aberrantly low variability in the estimated ξ’s.
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Figure 1 . The bias, MSE, and correlation when comparing true and estimated ξ across time from
both longitudinal HO-IRT and longitudinal UIRT models. The results were aggregated within
either correlation (left three panels) or residual variance (right three panels) conditions. Note that
the top plot displays bias results when subtracting the true value of a person parameter from its
estimated value.
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Figure 2 . The bias, MSE, and correlation when comparing true and estimated θ across time from
both longitudinal HO-IRT and longitudinal MIRT models. The results were aggregated within
either correlation (left three panels) or residual variance (right three panels) conditions. Note that
the top plot displays bias results when subtracting the true value of a person parameter from its
estimated value.

Figure 2 presents the recovery of θ’s from both the longitudinal HO-IRT model and the

longitudinal MIRT model, aggregated within either correlation condition (left panels) or residual

variance condition (right panels). As shown in Figure 2, the person-specific θ’s were actually

recovered pretty well when using either model under nearly all conditions, as demonstrated in the

small y-axis range in the plot. Moreover, points of the same shape but different colors are always

fairly close in Figure 2, also indicating that both models recover lower-order abilities with similar

precision. However, one can still spot a few trends from Figure 2, indicating some differential

performance in the two models. First, an increase in the correlation among lower-order factors

yielded a smaller MSE and higher correlation, but at the cost of a slight increase in bias when

t ≥ 2, which is commonly known as the bias variance tradeoff. Second, a larger residual variance
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in the higher-order parameters appears to have adversely affected estimation recovery when using

the L-MIRT model, as shown by the increased bias and MSE of θ’s over time for the red X’s on

the right side of the plot. In contrast to the estimation precision when using L-MIRT, the effect of

a large residual variance on the estimation precision of the L-HO-IRT model for t ≥ 2 was almost

negligible. One explanation for the lack of a time-dependent effect of residual variance on the

estimation precision of the L-HO-IRT model is that the residual variance was specified to be on

the higher-order trait, so that the effect of a larger residual variance of ξ on the estimation of the

lower order abilities was indirect, and the ultimate cost on θ recovery was small.

Item Parameters Recovery

Table 3 displays the bias of the estimated item parameters within each condition when

estimating parameters using each of the three models. The most striking observation from Table

3 is that the â-parameters show extreme positive bias when fitting the longitudinal UIRT model

in the condition when the residual variance is small and the correlations among lower-order

factors are small. In this condition, the set of items displays extreme multidimensionality, due to

the small correlation among the domain-level abilities. Moreover, a test with small residual

variance and small correlations among lower-order factors would be very close to the ideal

L-HO-IRT generating model. Therefore, the positive bias in the a-parameter estimates from the

L-UIRT model is probably due to the very low person variability relative to item variability when

σ2
δ = .05. â-parameter estimates became negatively biased, but with much smaller magnitude,

when the residual variance was large. This observation is consistent with the pattern observed in

Figure 1, in that ξ is recovered poorly when both σ2
δ and r are low.

When examining the results from the longitudinal MIRT model, one can notice that the

bias in the item parameter estimates are generally acceptable even though they are still larger, in

magnitude, than results from the L-HO-IRT model. The L-MIRT model contains more

parameters, and hence, in theory, it should also adequately fit the response matrix. However, the

additional, unnecessary parameters in L-MIRT results in increased difficulty in estimating item

properties, which yields more visible bias. Even so, the bias in estimating the item parameters

with the L-MIRT model only becomes unacceptable when σ2
δ = 0.25 and r = 0.7. This particular
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result would be expected, as high correlations among the dimensions has been known to lead to

estimation difficulty of the MIRT model item parameters (e.g., Chen & Wang, 2016; Wang &

Nydick, 2015). Moreover, introducing noise, via high residual variances, would further exacerbate

the difficulty the L-MIRT model has in estimating item parameters. In contrast to the L-UIRT

and L-MIRT models, the item parameter estimates from the L-HO-IRT model are all nearly

unbiased, indicating that the MCMC algorithm adequately recovered the true item parameters

when the model was correctly specified.

Table 4 displays the corresponding MSE of the item parameters estimates for those

conditions outlined earlier. Compared to Table 3, the same patterns persist in nearly all of the

cells in Table 4, suggesting that bias contributes the most to the actual MSE values in all cells of

the table. Moreover, for the L-HO-IRT model, the bias and MSE value are so small that the

differences across the conditions up to two (or three in some cases) decimal places are negligible.



Table 3
Average bias for estimates of item parameters for all manipulated conditions.

Longitudinal HO-IRT Longitudinal MIRT Longitudinal UIRT
σ2
δ r d a1 a2 a3 a4 d a1 a2 a3 a4 d a1 a2 a3 a4

0.05 0.3 0.007 -0.023 -0.010 -0.001 -0.019 0.005 -0.034 -0.043 -0.030 -0.048 0.030 0.805 0.829 0.691 0.726
0.5 0.000 -0.020 -0.010 0.000 -0.012 0.000 -0.035 -0.057 -0.036 -0.055 0.010 0.689 0.676 0.709 0.676
0.7 0.009 -0.005 -0.004 0.009 -0.008 0.009 -0.053 -0.085 -0.064 -0.082 0.019 0.553 0.553 0.519 0.556

0.25 0.3 0.007 -0.011 0.000 -0.003 -0.022 0.006 -0.038 -0.056 -0.043 -0.059 0.026 -0.110 -0.130 -0.106 -0.101
0.5 0.007 -0.016 -0.003 0.002 -0.016 0.007 -0.076 -0.083 -0.082 -0.092 0.012 -0.044 -0.068 -0.062 -0.058
0.7 0.003 -0.029 -0.010 0.044 0.005 0.001 -0.168 -0.166 -0.135 -0.152 0.016 -0.012 -0.010 -0.018 -0.004



Table 4
MSE for estimates of item parameters for all manipulated conditions.

Longitudinal HO-IRT Longitudinal MIRT Longitudinal UIRT
σ2
δ r d a1 a2 a3 a4 d a1 a2 a3 a4 d a1 a2 a3 a4

0.05 0.3 0.014 0.010 0.009 0.010 0.013 0.014 0.010 0.010 0.011 0.014 0.078 0.712 0.742 0.526 0.557
0.5 0.013 0.010 0.010 0.010 0.010 0.014 0.011 0.014 0.012 0.014 0.056 0.513 0.484 0.539 0.496
0.7 0.015 0.012 0.012 0.014 0.014 0.015 0.016 0.017 0.016 0.019 0.038 0.338 0.341 0.295 0.346

0.25 0.3 0.013 0.008 0.011 0.009 0.010 0.013 0.010 0.011 0.011 0.013 0.072 0.049 0.054 0.036 0.041
0.5 0.012 0.009 0.010 0.009 0.011 0.015 0.014 0.019 0.017 0.024 0.050 0.020 0.023 0.021 0.031
0.7 0.014 0.015 0.013 0.012 0.014 0.015 0.043 0.040 0.031 0.042 0.043 0.014 0.018 0.016 0.017
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Growth Parameters Recovery

Table 5
Average bias of the individual intercept and slope from the three models under all manipulated
conditions

Conditions Growth of ξ Growth of θ
Longitudinal HO-IRT

σ2
δ r π̂0i π̂1i λ̂1π̂0i λ̂1π̂1i λ̂2π̂0i λ̂2π̂1i λ̂3π̂0i λ̂3π̂1i λ̂4π̂0i λ̂4π̂1i

0.05 0.3 -0.003 -0.004 -0.001 -0.002 -0.001 -0.005 -0.001 -0.006 -0.001 -0.004
0.5 -0.002 -0.004 -0.001 -0.003 -0.001 -0.006 -0.001 -0.005 -0.001 -0.005
0.7 -0.005 -0.007 -0.004 -0.006 -0.004 -0.006 -0.004 -0.010 -0.004 -0.006

0.25 0.3 0.003 -0.003 0.001 -0.002 0.001 -0.008 0.001 -0.004 0.001 -0.002
0.5 0.004 -0.004 0.003 -0.003 0.003 -0.004 0.003 -0.008 0.003 -0.006
0.7 0.006 -0.006 0.005 -0.005 0.005 -0.013 0.005 -0.019 0.005 -0.008

L-UIRT Longitudinal MIRT
σ2
δ r π̂0i π̂1i π̂1

0i π̂1
1i π̂2

0i π̂2
1i π̂3

0i π̂3
1i π̂4

0i π̂4
1i

0.05 0.3 -0.003 -0.183 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.002 0.000
0.5 -0.004 -0.155 -0.003 0.006 -0.003 0.004 -0.003 0.004 -0.003 0.002
0.7 -0.007 -0.122 -0.007 0.013 -0.008 0.011 -0.008 0.010 -0.007 0.007

0.25 0.3 0.001 -0.122 -0.001 0.005 -0.001 0.000 -0.001 0.007 -0.001 -0.001
0.5 0.001 -0.085 -0.001 0.018 -0.001 0.011 -0.001 0.007 -0.001 0.005
0.7 0.004 -0.055 0.002 0.041 0.002 0.026 0.002 0.023 0.002 0.025

Table 5 and Table 6 display the bias in the individual growth parameter estimates given

each of the three models and across all of the conditions. In general, when estimating parameters

using the true L-HO-IRT model, the growth parameters (that is the individual slope and

intercept parameters) were all recovered well. The same general trend continues to hold as in the

previous two sections, in that higher correlations among the domain abilities and lower residual

variances in the higher-order trait leads to better estimation accuracy of the L-HO-IRT model

parameters. In contrast to the L-HO-IRT model, the L-MIRT model and L-UIRT model only

estimated growth trajectories at one level of the model. As shown in Tables 5 and 6, the L-MIRT

model resulted in acceptable recovery of the growth trajectories on the lower-order θ’s. However,

the magnitude of the bias and MSE are higher, although only slightly higher, than estimates from

the L-HO-IRT model. As described in the previous section, over-fitting the data with a less

parsimonious model continues to result in valid inferences on the individual growth parameters.

On the other hand, the longitudinal UIRT model resulted in quite a bit of negative bias
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Table 6
MSE of the individual intercept and slope from the three models under all manipulated conditions

Conditions Growth of ξ Growth of θ
Longitudinal HO-IRT

σ2
δ r π̂0i π̂1i λ̂1π̂0i λ̂1π̂1i λ̂2π̂0i λ̂2π̂1i λ̂3π̂0i λ̂3π̂1i λ̂4π̂0i λ̂4π̂1i

0.05 0.3 0.171 0.010 0.051 0.003 0.051 0.003 0.051 0.003 0.051 0.003
0.5 0.112 0.009 0.056 0.005 0.056 0.005 0.056 0.005 0.056 0.005
0.7 0.080 0.009 0.056 0.006 0.056 0.006 0.056 0.006 0.056 0.006

0.25 0.3 0.194 0.010 0.058 0.003 0.058 0.003 0.058 0.003 0.058 0.003
0.5 0.141 0.009 0.071 0.005 0.071 0.005 0.071 0.005 0.071 0.005
0.7 0.113 0.009 0.079 0.007 0.079 0.007 0.079 0.007 0.079 0.007

L-UIRT Longitudinal MIRT
σ2
δ r π̂0i π̂1i π̂1

0i π̂1
1i π̂2

0i π̂2
1i π̂3

0i π̂3
1i π̂4

0i π̂4
1i

0.05 0.3 0.353 0.043 0.053 0.004 0.053 0.004 0.052 0.004 0.053 0.003
0.5 0.262 0.033 0.058 0.006 0.057 0.005 0.058 0.006 0.058 0.005
0.7 0.178 0.024 0.059 0.007 0.058 0.007 0.058 0.007 0.059 0.007

0.25 0.3 0.272 0.024 0.060 0.005 0.060 0.005 0.060 0.005 0.061 0.005
0.5 0.184 0.016 0.079 0.010 0.078 0.010 0.078 0.010 0.079 0.009
0.7 0.131 0.012 0.114 0.023 0.106 0.019 0.106 0.019 0.109 0.020

when σ2
δ = .05 (which also explains the large bias of ξ̂ in Figure 1). Furthermore, the MSE of the

intercept and slope estimates both decreased as the correlation between the domain abilities, r,

increased. These findings suggest that when a test exhibits multidimensionality, fitting a simpler

unidimensional model will lead to biased conclusions regarding individual growth trajectories on

the general ability.

Finally, Table 7 reports the median bias of the population growth parameter estimates from

the three models. Unlike the previous tables, population growth is simply the population average

and variance of the growth parameters across all possible simulees. Note that population growth

is a parameter in the model and is not simply estimated by taking the average or variance of the

sample estimates of the individual slopes and intercepts. With regard to both the L-HO-IRT and

the L-MIRT models, all population growth parameters resulted in small bias with the exception

of one cell. When r = 0.7 and σ2
δ = 0.25 (the highest correlation between the domain abilities and

the largest residual variance), the L-MIRT model resulted in fairly large positive bias for the

variance of the intercepts. In these conditions, the θ̂’s would tend to be more dispersed than their

true values. This observation echoes results from Table 3.
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Unsurprisingly, given previous results, the L-UIRT model leads to poorer recovery of the

parameters, as reflected by the large negative bias of β1 and σ2
π0i . Again, this observation is

consistent with the previous results, and implies that the L-UIRT model tends to dramatically

underestimate the actual variability of the latent trait.

Table 7
Median bias of the population growth parameters from the three models under all manipulated
conditions

Conditions Longitudinal HO-IRT Longitudinal UIRT
σ2
δ r β1 σ2

π0i σ2
π1i β1 σ2

π0i σ2
π1i

0.05 0.3 -0.002 0.012 0.003 -0.184 -0.464 -0.009
0.5 0.001 -0.006 0.003 -0.155 -0.427 -0.009
0.7 -0.002 -0.010 0.000 -0.122 -0.370 -0.008

0.25 0.3 -0.001 -0.002 0.007 -0.121 -0.370 -0.007
0.5 -0.003 -0.007 0.002 -0.086 -0.280 -0.006
0.7 0.000 0.021 0.002 -0.053 -0.193 -0.005

Longitudinal MIRT
σ2
δ r β1

1 β2
1 β3

1 β4
1 σ2

π1
0i

σ2
π1

1i
σ2
π2

0i
σ2
π2

1i
σ2
π3

0i
σ2
π3

1i
σ2
π4

0i
σ2
π4

1i
0.05 0.3 0.004 0.000 0.000 0.003 0.016 0.005 0.030 0.007 0.015 0.008 0.023 0.006

0.5 0.005 0.005 0.004 0.002 0.018 0.007 0.023 0.008 0.017 0.008 0.029 0.007
0.7 0.010 0.015 0.007 0.010 0.037 0.008 0.068 0.009 0.046 0.009 0.052 0.008

0.25 0.3 0.003 -0.001 0.007 -0.001 0.024 0.010 0.029 0.011 0.022 0.012 0.035 0.012
0.5 0.013 0.010 0.008 0.006 0.046 0.018 0.060 0.021 0.054 0.020 0.057 0.018
0.7 0.033 0.035 0.021 0.024 0.178 0.035 0.188 0.036 0.145 0.033 0.154 0.033
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