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Large-scale assessments (LSAs) such as Programme for International Student Assessment 
(PISA), Trends in International Mathematics and Science Study (TIMSS), and National 
Assessment of Educational Progress (NAEP) provide reliable measures of educational 
achievement for group of students. The results of LSAs could be used to evaluate the equity and 
quality of educational systems, and to help policymakers and stakeholders to make informed 
decisions (Arikan et al., 2020; Meinck, 2020). The reliability and validity of the LSAs rely on 
obtaining a representative sample in which sampling design plays a key role. In general, LSAs 
employ a complex multistage sampling design where students are sampled within schools, and 
schools are sampled within higher-level units (i.e., states or countries; Rust, 2013; Laukaityte & 
Wiberg, 2018; OECD, 2018). This complex sampling design results in some units in the 
population chosen with unequal probabilities. When the analytic model such as the multilevel 
modeling does not account for different selection probabilities, biased parameter estimates and 
incorrect conclusions would be obtained (Pfeffermann et al., 1998; Laukaityte & Wiberg, 2018). 
One solution is to incorporate sampling weights into the model properly when estimating the 
population characteristics. 

While previous studies emphasize the necessity of using sampling weights for analyzing LSAs 
data in multilevel modeling (Rutkowski et al., 2010; Laukaityte & Wiberg, 2018; Arikan et al., 
2020), applying sampling weights to the item response theory (IRT) model, especially in the 
calibration process, is rarely discussed (Zheng & Yang, 2016). The purpose of this study is to 
evaluate the use of sampling weights in IRT calibration. The paper is structured as follows. The 
literature review section starts by briefly describing sampling weights and IRT calibration, 
followed by an overview of studies at the intersection of these two topics. Then, the simulation 
study section provides comparison between the models with and without sampling weights. The 
discussion section is given in the end. 

Literature Review 

Sampling Weights 

To accommodate the fact that some units are selected with unequal probabilities, sampling 
weights, taken to be the inverse of the probability of a unit being selected, are applied to LSA 
studies. Suppose that a sample consisting of 5 boys and 5 girls is selected from a population with 
20 boys and 10 girls. The probability of a girl being selected is 5/10 and the probability of a boy 
being selected is 5/20. Accordingly, the sampling weights for girls and boys are 2 and 4, 
respectively. These sampling weights are referred to as raw sampling weights (also named 
unscaled sampling weights), meaning that the sum of the weights within a sample is equal to the 



population size (Thomas & Heck, 2001). In this example, sampling weights add up to the 
population size 30 (2 ×  5 + 4 × 5 = 30). 

Ignoring sampling weights results in biased estimates of population characteristics. This happens 
in the previous example since boys have a larger proportion in the population, but the sample 
includes the same number of boys and girls. More specifically, suppose the 5 boys get 2, 3, 3, 4, 2 
points from an exam and the 5 girls get 4, 5, 5, 3, 4 points. The unweighted mean score of this 
sample is 2+3+3+4+2+ 4+ 5+5+3+4

10
= 3.5, whereas the weighted mean score is 

(2+3+3+4+2)×4+(4+5+5+3+4)×2
30

≈ 3.27. The weighted mean score is nearly 7% lower than the 
unweighted mean score. In LSA, this discrepancy could lead to the enactment of a different 
education policy (Rutkowski et al., 2010). 

The previous example adopts a single-level sampling scheme (i.e., boy/girl). In practice, the 
sampling schemes of LSAs are much more complicated and typically consist of multiple levels. 
For example, PISA usually adopts the following two-level scheme. At the first level, we sample 
a school with probability proportional to its size, whereby small schools are selected with lower 
probability, and at the second level, we sample students randomly from the selected school 
(Brewer & Hanif, 1983; OECD, 2018; Arikan et al., 2020). In such cases with multilevel 
sampling schemes, analyzing LSAs data without sampling weights or with only single-level 
sampling weights could yield misleading conclusions (Laukaityte & Wiberg, 2018). 
Consequently, many software programs such as Mplus (Muthén, & Muthén, 2017) and HLM 
(Raudenbush et al., 2011) have been developed to allow users to input sampling weights at 
multiple levels.  

IRT Calibration 

 IRT model (Lord & Novick, 1968) is commonly used in educational tests and LSAs for 
modeling the relation between the probability of answering an item correctly and the latent 
ability of the respondent. Among the many IRT models proposed in the literature, we focus 
throughout this study on the unidimensional two-parameter logistic (2PL) model. For a 
dichotomous item 𝑗𝑗, the probability of a respondent 𝑖𝑖 getting a correct answer (𝑌𝑌𝑖𝑖𝑖𝑖 = 1) is given 
by 

𝑃𝑃(𝑌𝑌𝑖𝑖𝑖𝑖 = 1|𝜃𝜃𝑖𝑖) =
exp (𝑎𝑎𝑖𝑖(𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑖𝑖))

1 + exp (𝑎𝑎𝑖𝑖(𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑖𝑖))
, (2) 

where 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 denote the item discrimination and difficulty parameters, respectively, and 𝜃𝜃𝑖𝑖 
denotes a continuous latent ability measured by the assessment.  

 In LSAs like PISA, item parameters (i.e., 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖) are first calibrated based on the 
response data from all participating countries and then treated as known when estimating the 
proficiency levels of respondents and inferring the proficiency distributions of countries (OECD, 
2016; Chen et al., 2022). Existing item calibration methods include separate calibration with 
linking (Loyd & Hoover, 1980; Stocking & Lord, 1983), fixed parameter calibration (FPC; Ban 
et al., 2001; Kim, 2006), and concurrent calibration (Bock & Zimowski, 1997; Cai, Albano, & 



Roussos, 2021), where the first two are sometimes combined into one under the name of separate 
calibration (i.e., Hanson & Béguin, 2002; von Davier et al., 2019). Let us now describe these 
three methods in more detail. Separate calibration with linking involves two steps. First, item 
parameters for all items on two test forms are calibrated separately. Second, two sets of item 
parameters are placed onto the same scale using a linear transformation method. The 
transformation coefficients are estimated by using two sets of item parameters of common items 
(Hu, Rogers, & Vukmirovic, 2008). FPC fixes item parameters of common items and calibrates 
new items only (Kim, 2006). The transformation step is not needed because fixed item 
parameters of common items set the same scale for all the items. Alternatively, concurrent 
calibration estimates all items on both forms simultaneously to ensure all item parameters are on 
the same scale (Cai, Albano, & Roussos, 2021).  

For each of the calibration methods described above, there exist many procedures to estimate the 
item parameters. For both FPC and concurrent calibration, a widely used approach is the 
marginal maximum likelihood estimation with expectation maximization algorithm (MMLE-
EM) proposed in (Bock & Aitkin, 1981; Mislevy & Bock, 1985); see (Kim, 2006; Wang, Chen, 
& Jiang, 2020) for some recent applications. The simulation design will focus on the concurrent 
calibration with MMLE-EM. 

It is necessary to take the complex sampling design into account when calibrating item 
parameters of LSAs. Roughly speaking, there are three main approaches in the literature. The 
first approach employs a multiple-group IRT approach (Bock & Zimowski, 1997). The multiple-
group IRT assumes different subgroup distributions (von Davier & Yamamoto, 2004; von Davier 
et al., 2019; Zheng & Yang, 2021). The second one is the multilevel IRT model to account for 
the nested data structure due to the sampling design (i.e., Kamata, 2001; Jiao et al., 2012; Zheng 
& Yang, 2016). The third one, incorporating sampling weights into the IRT calibration procedure 
(i.e., MMLE-EM), however, has been rarely explored (Zheng & Yang, 2016). The current study 
mainly focuses on the discussion of the third approach. 

Sampling Weights in IRT Calibration 

  Sampling weights and IRT calibration are two important techniques in LSAs. In a 
technical report of PISA, it mentions that one type of sampling weights, senate weight (sum of 
weights equals to 500 for each country), is used to minimize the effect of different country sizes 
on scaling during the item calibration process (Oliveri & von Davier, 2014; OECD, 2018). 
However, there has been few studies in the literature that discuss the effects of sampling weights 
on IRT calibration. In Zheng and Yang’s study (2016), they incorporated sampling weights into 
the likelihood function, and evaluated the performance of four models when analyzing nested 
response data: (1) a single-level IRT without weights, (2) a multilevel IRT without weights; (3) a 
single-level IRT with sampling weights; and (4) a multilevel IRT with weights. The simulation 
results showed that models accounting for sampling weights produced less biased estimates for 
item parameters in both single and multilevel IRT models, while multilevel IRT models yielded 
more accurate standard error estimates for item parameters comparing with single-level IRT 
models. Another relevant study (Smits, 2016) adopted sampling weights, and multiple-group IRT 
model, respectively, and compared these two approaches with a standard IRT model which 



ignored the sampling design. The simulation results indicated that ignoring the sampling design 
produced bias in both item and person parameters. There is another line of research that applied 
sampling weights to the IRT calibration, but their discussions mainly focused on the recovery of 
transformation coefficients instead of item parameters (i.e., Qian, Jiang, & von Davier, 2013; 
Qian, von Davier, & Jiang, 2013). In summary, all these studies highlight the importance of 
incorporating sampling weights into the likelihood function for IRT calibration. 

Simulation Study 

Simulation Design 

A simulation study was conducted to investigate the effects of sampling weights and sample size 
on IRT calibration. The unidimensional 2PL model was used to generate response data. The test 
length was fixed at 30. Item parameters were generated from the following distributions: 
𝑎𝑎𝑖𝑖~𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(0, 0.5), 𝑏𝑏𝑖𝑖~𝑙𝑙(0, 1). These distributions were chosen from the literature (see Suh, Cho, & 
Wollack, 2012). The population size was fixed at 5000, and the latent ability parameter for each 
person (𝜃𝜃𝑖𝑖) was generated from the standard normal distribution. The population was divided into 
high performing group (the highest 20% of ability parameters) and low performing group (the 
lowest 80% of ability parameters). Two sample sizes were considered: 500 and 1000, where the 
sample size of 500 represented the minimal sample size required for 2PL model (König, Spoden, 
& Frey, 2020). The sample of 500 was obtained by randomly selecting 25% of the students from 
the high performing group and 6.25% of the students from the low performing group. Similarly, 
the sample of 1000 consisted of 50% of the students from the high performing group and 12.5% 
of the students from the low performing group.  

Scaled Sampling Weights 

To incorporate sampling weights into the IRT calibration, the raw sampling weights discussed in 
the Introduction section could not be included in the likelihood function directly. Instead, it is 
necessary to scale the sampling weights (Carle, 2009), for which several methods have been 
proposed in the literature (Pfeffermann et al., 1998; Asparouhov 2006; Carle, 2009). The current 
study adopts a popular one proposed in Asparouhov (2006), where the scaled sampling weights 
sum up to the sample size: 

𝑤𝑤𝑖𝑖∗ =
𝑤𝑤𝑖𝑖𝑛𝑛
𝑙𝑙

, (1) 

where 𝑤𝑤𝑖𝑖∗,𝑤𝑤𝑖𝑖 refer to the scaled and raw sampling weights for respondent 𝑖𝑖, respectively, and 𝑛𝑛 
and 𝑙𝑙 refer to the sample and population size. 

For both sample size conditions, the scaled sampling weights for high and low performing 
groups were fixed at 0.4 and 1.6, respectively.  

MMLE-EM 

The MMLE-EM algorithm was implemented to estimate item parameters. To investigate the 
effects of sampling weights, two likelihood functions were considered for item calibration: 



weighted likelihood function (denoted as W-MML hereafter) and regular likelihood function 
(denoted as MML hereafter). 

We first describe the MML procedure. Let 𝚫𝚫 = (𝐚𝐚,𝐛𝐛) refer to the set of unknown item 
parameters, which are to be estimated in item calibration. When sampling weights are not 
considered, the marginal likelihood function of 𝚫𝚫  under a 2PL model is 

L = L(𝚫𝚫|𝒚𝒚1, … ,𝒚𝒚𝑁𝑁) = ��𝑃𝑃(𝒚𝒚𝑖𝑖|𝜃𝜃𝑖𝑖 ,𝚫𝚫)𝑙𝑙(𝜃𝜃|𝜏𝜏
𝑁𝑁

𝑖𝑖=1

)𝑑𝑑𝜃𝜃, (3) 

where 𝑃𝑃(𝒚𝒚𝑖𝑖|𝜃𝜃𝑖𝑖 ,𝚫𝚫) = ∏ [𝑃𝑃𝑖𝑖(𝜃𝜃𝑖𝑖)𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑃𝑃𝑖𝑖(𝜃𝜃𝑖𝑖))1−𝑦𝑦𝑖𝑖𝑖𝑖𝐽𝐽
𝑖𝑖=1 ] with 𝑃𝑃𝑖𝑖(𝜃𝜃𝑖𝑖)𝑦𝑦𝑖𝑖𝑖𝑖 computed using Equation 

(1), and 𝑙𝑙(𝜃𝜃|𝜏𝜏) refers to the density function of 𝜃𝜃 with 𝜏𝜏 denoting the parameters of the normal 
distribution. After some algebraic transformations and quadrature approximation, the derivative 
of the logarithmic transformation of the marginal likelihood equation (log likelihood function) 
with respect to 𝑎𝑎𝑖𝑖 can be expressed as 

∂
∂𝑎𝑎𝑗𝑗

logL = ��[𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖(𝜃𝜃)](𝜃𝜃 − 𝑏𝑏𝑖𝑖)𝑃𝑃(𝜃𝜃|𝒚𝒚𝑖𝑖 ,𝚫𝚫, 𝜏𝜏)𝑑𝑑𝜃𝜃
𝑁𝑁

𝑖𝑖=1

≈��[𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖(𝜃𝜃𝑘𝑘)](𝜃𝜃𝑘𝑘 − 𝑏𝑏𝑖𝑖)
𝑄𝑄

𝑘𝑘=1

𝑃𝑃(𝜃𝜃𝑘𝑘|𝑦𝑦𝑖𝑖 ,𝚫𝚫, 𝜏𝜏)
𝑁𝑁

𝑖𝑖=1

= 0, (4)

 

where 𝑃𝑃(𝜃𝜃𝑘𝑘|𝑦𝑦𝑖𝑖 ,𝚫𝚫, 𝜏𝜏) = 𝑃𝑃�𝒚𝒚𝑖𝑖�𝜃𝜃𝑘𝑘,𝚫𝚫�𝑔𝑔(𝜃𝜃𝑘𝑘|𝜏𝜏)
𝑃𝑃�𝒚𝒚𝑖𝑖�𝚫𝚫�

= 𝑃𝑃(𝒚𝒚𝑖𝑖∣𝜃𝜃𝑘𝑘,𝚫𝚫)𝑔𝑔(𝜃𝜃𝑘𝑘∣𝜏𝜏)
∑  𝑄𝑄𝑘𝑘 𝑃𝑃(𝒚𝒚𝑖𝑖∣𝜃𝜃𝑘𝑘,𝚫𝚫)𝑔𝑔(𝜃𝜃𝑘𝑘∣𝜏𝜏)

 refers to the posterior distribution 

of 𝜃𝜃𝑘𝑘. To solve the equation, two auxiliary parameters are defined here: 

𝑛𝑛�𝑖𝑖𝑘𝑘 = � 
𝑁𝑁

𝑖𝑖=1

𝑃𝑃(𝜃𝜃𝑘𝑘 ∣ 𝒚𝒚𝑖𝑖 ,𝚫𝚫, 𝜏𝜏) = � 
𝑁𝑁

𝑖𝑖=1

�
𝑃𝑃(𝒚𝒚𝑖𝑖 ∣ 𝜃𝜃𝑘𝑘,𝚫𝚫)𝑙𝑙(𝜃𝜃𝑘𝑘 ∣ 𝜏𝜏)

∑  𝑄𝑄𝑘𝑘 𝑃𝑃(𝒚𝒚𝑖𝑖 ∣ 𝜃𝜃𝑘𝑘,𝚫𝚫)𝑙𝑙(𝜃𝜃𝑘𝑘 ∣ 𝜏𝜏)
� , (5) 

�̅�𝑟𝑖𝑖𝑘𝑘 = � 
𝑁𝑁

𝑖𝑖=1

𝑦𝑦𝑖𝑖𝑖𝑖𝑃𝑃(𝜃𝜃𝑘𝑘 ∣ 𝒚𝒚𝑖𝑖 ,𝚫𝚫, 𝜏𝜏) = � 
𝑁𝑁

𝑖𝑖=1

�
𝑦𝑦𝑖𝑖𝑖𝑖𝑃𝑃(𝒚𝒚𝑖𝑖 ∣ 𝜃𝜃𝑘𝑘,𝚫𝚫)𝑙𝑙(𝜃𝜃𝑘𝑘 ∣ 𝜏𝜏)
∑  𝑄𝑄𝑘𝑘 𝑃𝑃(𝒚𝒚𝑖𝑖 ∣ 𝜃𝜃𝑘𝑘,𝚫𝚫)𝑙𝑙(𝜃𝜃𝑘𝑘 ∣ 𝜏𝜏)

� . (6) 

Using 𝑛𝑛�𝑖𝑖𝑘𝑘 and �̅�𝑟𝑖𝑖𝑘𝑘, Equation (4) can be rewritten as: 

∂
∂𝑎𝑎𝑗𝑗

logL = �(𝜃𝜃𝑘𝑘 − 𝑏𝑏𝑖𝑖)[
𝑄𝑄

𝑘𝑘=1

�̅�𝑟𝑖𝑖𝑘𝑘 − 𝑛𝑛�𝑖𝑖𝑘𝑘𝑃𝑃𝑖𝑖(𝜃𝜃𝑘𝑘)] = 0. (7) 

Similarly, the derivative with respect to 𝑏𝑏𝑖𝑖 can be expressed as: 

∂
∂𝑏𝑏𝑗𝑗

logL = �−𝑎𝑎𝑖𝑖[
𝑄𝑄

𝑘𝑘=1

�̅�𝑟𝑖𝑖𝑘𝑘 − 𝑛𝑛�𝑖𝑖𝑘𝑘𝑃𝑃𝑖𝑖(𝜃𝜃𝑘𝑘)] = 0. (8) 

To estimate item parameters, we use the EM algorithm detailed as follows: 



1. Initialize all item parameters (𝑡𝑡 = 1): 𝑎𝑎𝑖𝑖1, 𝑏𝑏𝑖𝑖1; 

2. At the t-th iteration, compute 𝑛𝑛�𝑖𝑖𝑘𝑘𝑡𝑡 , �̅�𝑟𝑖𝑖𝑘𝑘𝑡𝑡  using Equations (5) and (6) [E-step]; 

3. Solve Equations (7) and (8) to update 𝑎𝑎𝑖𝑖𝑡𝑡+1, 𝑏𝑏𝑖𝑖𝑡𝑡+1 [M-step]; 

4. Repeat steps 2 and 3 until convergence criterion is met. In this study, the convergence 
criterion is met when the maximum difference between item parameter estimates in two 
consecutive steps is smaller than 0.001. 

Next, we describe the W-MML, where sampling weights are incorporated into the likelihood 
function. In this case, 𝑃𝑃(𝒚𝒚𝑖𝑖|𝜃𝜃𝑖𝑖 ,𝚫𝚫) becomes 𝑃𝑃(𝒚𝒚𝑖𝑖|𝑤𝑤𝑖𝑖 ,𝜃𝜃𝑖𝑖 ,𝚫𝚫):  

𝑃𝑃(𝒚𝒚𝑖𝑖|𝑤𝑤𝑖𝑖 ,𝜃𝜃𝑖𝑖 ,𝚫𝚫) =  �[𝑃𝑃𝑖𝑖(𝜃𝜃𝑖𝑖)𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑃𝑃𝑖𝑖(𝜃𝜃𝑖𝑖))𝑤𝑤𝑖𝑖(1−𝑦𝑦𝑖𝑖𝑖𝑖)

𝐽𝐽

𝑖𝑖=1

] . (9) 

Accordingly, Equations (5) and (6) are modified as: 

𝑛𝑛�𝑖𝑖𝑘𝑘 = � 
𝑁𝑁

𝑖𝑖=1

𝑃𝑃(𝜃𝜃𝑘𝑘 ∣ 𝒚𝒚𝑖𝑖 ,𝚫𝚫, 𝜏𝜏,𝑤𝑤𝑖𝑖) = � 
𝑁𝑁

𝑖𝑖=1

�
𝑤𝑤𝑖𝑖𝑃𝑃(𝒚𝒚𝑖𝑖 ∣ 𝑤𝑤𝑖𝑖 ,𝜃𝜃𝑘𝑘,𝚫𝚫)𝑙𝑙(𝜃𝜃𝑘𝑘 ∣ 𝜏𝜏)
∑  𝑄𝑄𝑘𝑘 𝑃𝑃(𝒚𝒚𝑖𝑖 ∣ 𝑤𝑤𝑖𝑖 , 𝜃𝜃𝑘𝑘,𝚫𝚫)𝑙𝑙(𝜃𝜃𝑘𝑘 ∣ 𝜏𝜏)

� , (10) 

�̅�𝑟𝑖𝑖𝑘𝑘 = � 
𝑁𝑁

𝑖𝑖=1

𝑦𝑦𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑃𝑃(𝜃𝜃𝑘𝑘 ∣ 𝒚𝒚𝑖𝑖 ,𝚫𝚫, 𝜏𝜏) = � 
𝑁𝑁

𝑖𝑖=1

�
𝑦𝑦𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑃𝑃(𝒚𝒚𝑖𝑖 ∣ 𝜃𝜃𝑘𝑘,𝚫𝚫)𝑙𝑙(𝜃𝜃𝑘𝑘 ∣ 𝜏𝜏)
∑  𝑄𝑄𝑘𝑘 𝑃𝑃(𝒚𝒚𝑖𝑖 ∣ 𝜃𝜃𝑘𝑘,𝚫𝚫)𝑙𝑙(𝜃𝜃𝑘𝑘 ∣ 𝜏𝜏)

� . (11) 

These modified auxiliary parameters are used to find solutions for Equations (7) and (8). The EM 
algorithm follows the same steps as described above. 

Evaluation Criteria 

 One hundred replications were conducted for each condition. The bias and root mean 
squared error (RMSE) of item discrimination and difficulty parameters were adopted to evaluate 
the parameter recovery, which were computed across all replications per item. For instance, the 
bias and RMSE for 𝑎𝑎𝑖𝑖 are 

Bias𝑎𝑎𝑖𝑖 =
∑  𝑅𝑅
𝑟𝑟=1 𝑎𝑎�𝑖𝑖𝑟𝑟 − 𝑎𝑎𝑖𝑖

𝑅𝑅
, (12) 

RMSE𝑎𝑎𝑖𝑖 = �
1
𝑅𝑅
�  
𝑅𝑅

𝑟𝑟=1

�𝑎𝑎�𝑖𝑖𝑟𝑟 − 𝑎𝑎𝑖𝑖�
2, (13) 

where 𝑎𝑎𝑖𝑖 is the true parameter, and 𝑎𝑎�𝑖𝑖𝑟𝑟 refers to its estimate in the r-th replication.  

 The process of the simulation study is summarized in Figure 1. 

 



Figure 1 

The process of the simulation study 

 

 

Results 

 Figure 2 presents the bias results of item parameters using two calibration methods 
(MML and W-MML) under different sample sizes (500 and 1000). The boxplots represent the 
bias results for each item parameter computed from Equation (12). We see that, in general, item 
discrimination parameters (𝑎𝑎𝑖𝑖) were overestimated, whereas item difficulty parameters (𝑏𝑏𝑖𝑖) were 
underestimated, regardless of the sample size. Compared with MML, W-MML yielded less 
biased estimates for both item parameters, and this discrepancy was more substantial when 
estimating 𝑏𝑏𝑖𝑖. W-MML also produced unbiased results for some item discrimination parameters, 
with the caveat that this calibration method was more likely to produce outliers. MML yielded 
more variability of bias results across items. We also note that in the current setting, the effect of 
sample size was almost negligible. 

Figure 2 

Boxplot of Bias Results of 30 Items for each parameter 
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 Figure 3 presents the distribution of RMSE values for each item parameter. Excluding the 
outliers, the RMSE results from MML and W-MML were almost indistinguishable in terms of 
the estimates of 𝑎𝑎𝑖𝑖, whereas W-MML produced smaller RMSE values for 𝑏𝑏𝑖𝑖. Increasing the 
sample size slightly improved the accuracy of item parameter estimates for both calibration 
methods. For W-MML, the outlier became an issue under the small sample size condition (i.e., 
n=500), especially for the estimate of 𝑏𝑏𝑖𝑖. The RMSE value for one item difficulty parameter 
almost reached 3.0. 

Figure 3 

Boxplot of RMSE Results of 30 Items for each parameter 



 

Discussion 

In the current study, the effect of sampling weights on IRT calibration was investigated. The 
simulation design considered two sample size conditions. Bias and RMSE values were computed 
to evaluate the performance of likelihood function (MML) and weighted likelihood function (W-
MML). The results showed that the item calibration accounting for sampling weights produced 
more accurate estimates of item parameters under both conditions, which were consistent with 
previous findings (Smits, 2016; Zheng & Yang, 2016). However, W-MML has the tendency to 
induce more outliers under the small sample size condition. The current results showed that the 
difference between the two sample size conditions was almost unnoticeable, which support the 



argument that a sample size of 500 is sufficient for accurate estimates of item parameters for the 
2PL model (Baker, 1998).  

There are some limitations to the current study. First, the study only focused on the 2PL model. 
The weighted calibration method could be generalized to other IRT models, such as the graded 
response model for polytomous items (Samejima, 1970), or the three-parameter logistic model 
(3PL) to account for guessing behaviors. Second, smaller sample sizes of other magnitudes could 
be explored to compare the performance of the two calibration methods. This is a meaningful 
direction because the calibration is typically conducted with smaller sample size in practice (de 
la Torre & Hong, 2010). Third, the current study only provides point estimates for item 
parameters. Future research could address the estimates of standard errors for the weighted 
calibration method. 
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