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Using Bayesian IRT for Multi-Cohort Repeated Measure Design to Estimate Individual 
Latent Change Scores 

 
Abstract  

 
Repeated measure data design has been used extensively in a wide range of fields, such as brain 

aging or developmental psychology, to answer important research questions exploring 

relationships between trajectory of change and external variables. In many cases, such data may 

be collected from multiple study cohorts and harmonized, with the intention of gaining higher 

statistical power and enhanced external validity. When psychological constructs are measured 

using survey scales, a fundamental psychometric challenge for data harmonization is to create 

commensurate measures for the constructs of interest across studies. Traditional analysis may fit 

a unidimensional item response theory (IRT) model to data from one time point and one cohort 

to obtain item parameters and fix the same parameters in subsequent analyses. Such a simplified 

approach ignores item residual dependencies in the repeated measure design on one hand, and on 

the other hand, it does not exploit accumulated information from different cohorts. Instead, two 

alternative approaches should serve such data designs much better: an integrative approach using 

multiple-group two-tier model via concurrent calibration, and if such calibration fails to 

converge, a Bayesian sequential calibration approach that uses informative priors on common 

items to establish the scale. Both approaches use a Markov chain Monte Carlo (MCMC) 

algorithm that handles computational complexity well. Through a simulation study and an 

empirical study using Alzheimer’s Diseases Neuroimage Initiative (ADNI) cognitive battery data 

(i.e., language and executive functioning), we conclude that latent change scores obtained from 

these two alternative approaches are more precisely recovered.  

Key words: Bayesian item response theory, two-tier model, latent change score, bi-factor model 
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The National Institute of Health actively endorses the sharing of data sets between research 

teams. For instance, National Institute on Aging (NIA) lately funded a Harmonized Cognitive 

Assessment Protocol (HCAP) to measure and understand dementia risk within ongoing 

longitudinal studies of aging around the world to harmonize data, methods, and content to 

facilitate cross-national comparisons.1 NIA also put out a new grant competition on 

harmonization of Alzheimer’s disease and related dementias (ADRD) genetic, epidemiologic, 

and clinical data to optimize the ability to identify well-targeted therapeutic approaches for 

ADRD. The position and efforts of prominent national agencies signal the emerging trend of 

leveraging scarce resources to assemble cross-study data sets to efficiently address overarching 

research questions. Required to accomplish these goals are methods to support principled 

analysis of pooled datasets, one of which is to reconcile between-study differences in the 

measurement of key constructs, such as cognitive ability (Vonk et al., 2022), HIV stigma (Kemp 

et al., 2019), alcohol use (Huh et al., 2015; Witkiewitz et al., 2016), marijuana use (Silins et al., 

2015), among others. Only when putting the factor scores of those constructs from different 

validated instruments or the same instruments from different populations on the commensurate 

scale can the subsequent statistical analysis of intervention effects on the pooled data be valid. In 

addition, a desirable potential advantage is the broader psychometric assessment of theoretical 

constructs resulting from the use of different item sets across study. 

Integrative data analysis (IDA) is a novel framework for conducting the simultaneous 

analysis of raw data pooled from different studies. It offers many advantages, including 

increased power due to larger sample size, enhanced external validity and generalizability due to 

greater heterogeneity in demographic and psychosocial characteristics, cost effectiveness due to 

 
1 https://hrs.isr.umich.edu/data-products/hcap 
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reuse of extant data, and potential to address new research questions not feasible by a single 

study, etc. (Curran & Hussong, 2009; Curran et al., 2010). However, significant methodological 

challenges must be addressed when pooling data from independent studies, and one such 

challenge is to establish commensurate measures for the constructs of interest (Nance et al., 

2017). When data from different yet overlapping instruments and diverse samples are pooled, 

psychometric analysis needs to be general and flexible enough to accommodate idiosyncrasies in 

the population and instrument designs.  

As psychological constructs of interest cannot be directly observed, they are often 

measured by a set of survey items, making item response theory (IRT) an appropriate candidate 

for analysis. Traditionally, data from a single representative sample in one study is first analyzed, 

such as using a specific IRT model to calibrate item parameters. Then such item parameters are 

carried forward in subsequent analyses as if they are free of measurement and estimation errors 

(Choi et al., 2020; Crane et al., 2012, 2021; Schober & Vetter, 2018). With the advancement of 

multilevel and multiple-group IRT models (Cai et al., 2011; Wang & Nydick, 2020), a better 

approach to such data would be to take an integrated approach that simultaneously handle data 

from different studies together.  

Aside from the multi-cohort design that naturally arises when pooling data from different 

studies (e.g., Davoudzadeh, et al., 2020), this paper also considers a compounded repeated 

measure design that intends to measure individual change.  When the research focus is on 

tracking individual’s change on the latent construct over time, such as in the field of 

developmental, clinical, educational, and applied psychology (e.g., Grimm et al., 2013, McArdle, 

1988; McArdle et al., 2009), either second-order latent growth curve (LGC) models (e.g., Bauer 

& Curran, 2016; Caprara et al., 2011; Hancock et al., 2001; McArdle, 1988; Meredith & Tisak, 
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1990; Soland et al., 2019; Soland & Kuhfeld, 2019) or longitudinal IRT models (Cai & Houts, 

2021; Wang & Nydick, 2020; Paek et al., 2014) are the de facto tools. Mathematically, 

longitudinal IRT models can be reparametrized as second-order or higher-order latent growth 

curve models (e.g., Edwards & Wirth, 2009; Wang et al., 2016), which implies that they are 

inherently equivalent, and both can be fitted with general-purpose software packages such as 

Mplus (Muthén & Muthén, 2023), OpenMx (Boker et al., 2023), and Lavvan (Rosseel, 2012).  

However, when primary measurements differ from one occasion to the next, due to age 

appropriateness (McArdle, et al., 2009), new and improved test batteries (e.g., Edwards & Wirth, 

2009), or test security, longitudinal IRT modeling framework is preferred. That is because the 

IRT approach can naturally separate “differences in the scales over time from changes in the 

constructs over time” (McArdle, et al., 2009, p.129), via the IRT linkage of common items 

(Edwards & Wirth, 2009; Wang, et al., 2016).  

Although multi-cohort repeated measure design is common when one pools longitudinal 

data from different studies, most of the current published analyses still use a simplified approach. 

That is, a unidimensional IRT model is used to estimate item parameters from a single 

representative sample. Such item parameters are then used in other studies via a fixed-parameter 

calibration (Choi et al., 2020; Crane et al., 2012; Kim & Kolen, 2016; Wang et al., 2019). The 

second-order LGC model or longitudinal IRT models are still much less adopted in real data 

analysis (Kuhfeld & Soland, 2022; Isiordia & Ferrer, 2018), partly because simultaneously 

modeling measurement and change is hindered by computational and practical concerns (Bauer 

& Curran, 2016), such as the large samples needed to obtain stable parameter estimates. 

However, little evidence exists about the precision loss, if any, from such a simplified yet 

probably more feasible approach compared to a more sophisticated approach in terms of 
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individual change scores. Such change scores can be used in subsequent analyses, for instance, to 

establish links between treatment and effect, or to cluster individuals based on different change 

patterns and then use clusters to explain outcome variables (i.e., varying levels of cognitive 

change indicate different risks of conversion from mild cognitive impairment to Alzheimer’s 

disease, Choi et al., 2020). Hence, quantifying and minimizing measurement errors of individual 

change score is essential to increase power of subsequent analysis. Indeed, there are so many 

ways scores can be extracted from a single data source, and these different choices (i.e., using a 

simplified approach such as a unidimensional IRT model vs. using a more sophisticated 

approach such as a longitudinal IRT model) may contribute to the now well-documented 

replication issues in psychological studies (Fried & Flake, 2018).  

Our study involves simulation and empirical studies to investigate how to leverage 

Bayesian Markov chain Monte Carlo (MCMC) to optimally extract individual change scores 

from multi-cohort repeated measure design in which instruments may differ across time and 

across studies. We choose Bayesian MCMC over the popular full-information maximum 

likelihood (FIML) here because FIML is computationally prohibitive when the number of latent 

factors in the model is high (Fox, 2010). The high dimensionality issue occurs when either the 

number of time points and/or the number of repeated-administered items (hence the number of 

nuisance factors) are large. Instead, Bayesian estimation serves as a viable alternative for IDA 

not only because it deals with missing data as well as FIML while obviating FIML’s high-

dimensional challenge, but also due to its nature of incorporating varying degrees of prior 

information. When estimation of a complex model proceeds in stages, it can incorporate 

uncertainties in separate stages of the estimation whereas other estimation methods would have 

to ignore the uncertainties across stages undesirably. McArdle et al. (2009) first used MCMC on 
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their proposed longitudinal invariant Rasch test (LIRT) model. Our paper differs significantly 

from theirs in that (1) we use the graded response model that allows for discrimination 

parameters to differ across items and that can handle Likert scale items; (2) we consider a multi-

group scenario to account for between-study population differences (e.g., Davoudzadeh, et al., 

2020); and (3) we include nuisance factors in the model to account for time dependency of the 

same items administered repeatedly. To model growth trajectories, we choose not to impose any 

second-order structural models because they are studied elsewhere (e.g., Wang & Nydick, 2019; 

Wang et al., 2016), and we restrict our discussion to two and three time point models, which are 

commonly seen in quick-paced clinical trials.  

In addition to computational benefits of the Bayesian approach, Bayesian latent variable 

modeling, in general, has been demonstrated to be a more flexible representation of substantive 

theory because it allows to “replace parameter specifications of exact zeros with approximate 

zeros based on informative, small-variance priors.” (Muthen & Asparouhov, 2012). Freeing 

these parameters in conventional maximum likelihood estimation would render the model non-

identified, whereas in Bayesian estimation, substantively driven small-variance priors bring 

information into the analysis which alleviates the nonidentification issue. As we will explicate in 

the following sections, the main idea of using informative priors to ensure model identification is 

applied in our proposed multi-stage estimation, in which informative priors are imposed on 

common items shared between different study cohorts to place their parameters on the same 

scale.  

To summarize, we focus on three approaches in the study: the traditional unidimensional 

IRT model using data from a single cohort and single time point; the integrated model (namely, 

the multiple-group two-tier model) with concurrent calibration, and the integrated model with 
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multi-stage calibration. The latter two approaches complement each other in that if study design 

(or sample size) supports concurrent calibration, it is a statistically ideal choice. Otherwise, the 

multi-stage calibration is a robust alternative and more importantly, the Bayesian framework 

provides a principled way to conduct staged calibration that considers estimation uncertainties at 

each stage. The simulation results illuminate the conditions under which the simple 

unidimensional model approach produces comparable results, as well as quantifying the 

precision loss in other conditions. The real data example provides detailed analysis protocols for 

estimating individual change scores from the multi-cohort repeated measure design, including 

steps of evaluating model fit. The recommended two approaches perform strikingly well as the 

change score extracted therefrom are much better separated from measurement errors, thereby 

providing stronger signals to relate change scores with external variables.  

The Multiple-Group Two-Tier Model (MGTT) 

For the multi-cohort repeated measure design, a multiple-group two-tier model (MGTT), which 

is a straightforward extension of the two-tier model (Cai, 2010b; Cai et al, 2011), will serve as an 

integrated model. The well-studied multiple group IRT model (Davoudzadeh et al., 2020) is a 

special case of the MGTT model.  However, implementing the MGTT model in practice is 

challenging due to model complexity. In what follows, we introduce the formal parameterization 

of the MGTT model, followed by a discussion of model estimation that sets the stage for our 

proposal of multi-stage Bayesian estimation.  

The MGTT model is built upon the multidimensional graded response model (MGRM; 

Hsieh et al., 2010, Jiang et al., 2016; Wang et al., 2018) that includes the graded response model 

(Samejima, 1969), the two-parameter logistic (2PL) model and the multidimensional 2PL model 

(Reckase, 2009) as special cases. The model is suitable for outcomes such as symptom presence 
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(yes/no), symptom severity/frequency, or other types of polytomous responses. Assume item j 

has 𝐶𝐶𝑗𝑗 ordered response categories that any response, 𝑙𝑙, to item j falls within the set of 𝑙𝑙 ∈

{0, … , 𝐶𝐶𝑗𝑗 − 1}.1F

2 For an individual i with a K-dimensional latent trait level 𝜽𝜽𝑖𝑖 ∈ ℝ𝐾𝐾, the 

probability of a response to item j, 𝑦𝑦𝑖𝑖𝑗𝑗, is a function of 𝜽𝜽𝑖𝑖, the item’s K-dimensional 

discrimination parameter 𝒂𝒂𝑗𝑗 ∈ ℝ+
𝐾𝐾 and the boundary parameters 𝑑𝑑𝑗𝑗,1, … , 𝑑𝑑𝑗𝑗,𝐶𝐶𝑗𝑗−1 ∈ ℝ1. The 

MGRM starts out by defining the boundary response function as follows, which is the 

probability of responding to response category 𝑙𝑙 or higher, i.e., 𝑃𝑃(𝑦𝑦𝑖𝑖𝑗𝑗 ≥ 𝑙𝑙):    

𝑃𝑃(𝑦𝑦𝑖𝑖𝑗𝑗 ≥ 𝑙𝑙|𝜽𝜽𝑖𝑖 ,  𝒂𝒂𝑗𝑗 ,  𝒅𝒅𝑗𝑗) = 1
1+exp(−(𝒂𝒂𝑗𝑗

⊤𝜽𝜽𝑖𝑖−𝑑𝑑𝑗𝑗,𝑙𝑙−1))
  .                           (1) 

Then the probability for each response class can be given by the difference between two adjacent 

boundary response functions, 

𝑃𝑃(𝑦𝑦 = 𝑙𝑙) ≡ 𝑝𝑝𝑗𝑗𝑗𝑗 = 𝑃𝑃(𝑦𝑦 ≥ 𝑙𝑙) − 𝑃𝑃(𝑦𝑦 ≥ 𝑙𝑙 + 1). 

It is assumed that 𝜽𝜽𝑖𝑖 follows a multivariate normal distribution with mean of µ and covariance 

matrix of 𝚺𝚺. 

 Extending MGRM to a multiple-group two-tier version, let us assumes K=2, implying the 

existence of two main factors. It could be a single main factor measured twice. Then, a series of 

nuisance factors are added so that Equation 1 is updated as 

𝑃𝑃�𝑦𝑦𝑖𝑖𝑗𝑗 ≥ 𝑙𝑙�𝜽𝜽𝑖𝑖 ,  𝒂𝒂𝑗𝑗 ,  𝒅𝒅𝑗𝑗 , 𝜼𝜼𝑖𝑖� =
1

1 + exp �−�𝒂𝒂𝑗𝑗
⊤𝜽𝜽𝑖𝑖(𝑔𝑔) − 𝑑𝑑𝑗𝑗,𝑗𝑗−1 + 𝜆𝜆𝑗𝑗(𝑔𝑔)𝜂𝜂𝑖𝑖𝑗𝑗��

   , (2) 

 
2 Here we assume the lowest score is 0, and the highest score is the number of total response categories minus 1. 
That is, for an item with 4 response categories, the list of possible scores would be: 0, 1, 2, and 3. We chose this 
parameterization just to be consistent with the convention of graded response models. If users use other 
parameterizations (such as 1, 2, 3, 4 for scores), that will yield equivalent results as well albeit slightly modified 
notations.  
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where 𝜂𝜂𝑖𝑖𝑗𝑗 is the nuisance factor for person i on item j assuming item j is administered repeatedly. 

In many cases, it is assumed that 𝜂𝜂𝑖𝑖𝑗𝑗~𝑁𝑁(0, 1) and all 𝜂𝜂𝑖𝑖𝑗𝑗 (for any item 𝑗𝑗)’s are mutually 

independent and they are all independent of 𝜽𝜽𝑖𝑖. The subscript “𝑔𝑔” denotes group, 𝜽𝜽𝑖𝑖(𝑔𝑔) follows a 

multivariate normal distribution with mean of µ𝑔𝑔and covariance matrix of 𝚺𝚺𝑔𝑔.  Without group 

subscripts on item parameters 𝒂𝒂𝑗𝑗  and 𝒅𝒅𝑗𝑗, Equation 2 implicitly assumes that all items function 

the same for all people (i.e., differential item functioning [DIF] does not exist; Holland & 

Thayer, 1988; Penfield & Camilli, 2006; Woods, 2009; Woods & Grimm, 2011). The only 

exception is 𝜆𝜆𝑗𝑗(𝑔𝑔), which implies that the loading of item j on the nuisance factor 𝜂𝜂𝑖𝑖𝑗𝑗 can vary 

across groups. This flexibility is intentionally built in the model for two reasons: (1) it is hard to 

justify the equality of loadings on nuisance factors over time; and (2) different 𝜆𝜆𝑗𝑗(𝑔𝑔) per group 

does not lead to undesirable DIF because the introduction of nuisance factors is merely a re-

partition of the residual covariances among items after controlling for the main factors. We 

further explain this second point in a remark below to show that the main factor scores will not 

be affected with the inclusion of the nuisance factor, highlighting the inherent connection 

between the bi-factor model and unidimensional model.  Figure 1 presents an illustrative diagram 

of the model. In this figure, executive functioning (EF) serves as the primary factor that is 

measured twice and hence, they are correlated over repeated measures. In addition, there is 

another nuisance factor called “clock method” (Crane et al., 2012) that accounts for the shared 

commonality among five measures using the same clock stimulus, and it covaries over time as 

well. Further, nine additional nuisance factors are introduced to explain residual dependence 

between the same items administered twice. In this multi-cohort setting, the distribution of both 

EF and clock method factors can vary across groups. 

Insert Figure 1 Here 
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Concurrent Estimation 

Let’s return to our motivation example in which there are two cohorts and two time points, and 

some items are shared between cohorts and measurement waves to establish a common scale. 

Whenever an item j is administered repeatedly, an 𝜂𝜂𝑖𝑖𝑗𝑗 is introduced to account for residual 

dependence. Without loss of generality, we assume the first group is the reference group, and 

then for model identifiability, µ11 = 0 (i.e., the mean of the main factor at time 1, group 1), and 

the diagonal elements of Σ11 is set to 1, implying that the main factor (e.g., EF at time 1, group 

1) has a mean of 0 and variance of 13. All remaining elements in µ1 and 𝚺𝚺1 as well as µ𝑔𝑔 and  𝚺𝚺𝑔𝑔 

(𝑔𝑔 ≠ 1) are freely estimable. As to the nuisance factors, because we only consider the same 

items administered twice, 𝜆𝜆𝑗𝑗(𝑔𝑔) is constrained to be equal over time for model identification. 

Even so, the sign of 𝜆𝜆𝑗𝑗(𝑔𝑔) is still indeterminant because flipping the sign of both 𝜆𝜆𝑗𝑗(𝑔𝑔) and 𝜂𝜂𝑖𝑖𝑗𝑗 

would yield equivalent models. There are two ways to resolve this indeterminacy: constraining 

all 𝜆𝜆𝑗𝑗(𝑔𝑔)’s to be non-negative or fixing 𝜆𝜆𝑗𝑗(𝑔𝑔) = 1 but estimating the variance of 𝜂𝜂𝑖𝑖𝑗𝑗 per group 

(denoted as 𝜎𝜎𝑗𝑗(𝑔𝑔)
2 ). We use the latter one in our study because it is easier to implement in 

Bayesian MCMC. The means of all nuisance factors are constrained to be 0. 

 Model estimation can proceed using either marginal maximum likelihood (MML) 

estimation or Bayesian MCMC. Although the MGTT model may be high-dimensional due to a 

potentially high number of nuisance factors, MML estimation will be greatly simplified using 

analytic dimension reduction (Cai et al., 2011; Gibbons & Hedeker, 1992, 2007; Rijmen et al., 

2008) such that only a three-dimensional integral is necessary. Specifically, for the model 

 
3 The model shown in Figure 1 is slightly more complicated due to the introduction of “clock method” factor. As we 
will make it clear in the real data example, the mean and variance of the clock method factor at time 1 group 1 is set 
to 0 and 1 respectively, whereas the mean and variance of it in the second time points are freely estimated. The mean 
and variance of the clock method factor do not differ across the two cohorts as otherwise the model cannot 
converge. Clock method is uncorrelated with any other factors.  
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expressed in Equation 2, the marginal likelihood of model parameters, 𝚫𝚫, which includes  𝒂𝒂𝑗𝑗 ,  𝒅𝒅𝑗𝑗 

𝜆𝜆𝑗𝑗(𝑔𝑔), for 𝑗𝑗 = 1, . . , 𝐽𝐽, µ𝑔𝑔, 𝚺𝚺𝑔𝑔, for 𝑔𝑔 = 1, … , 𝐺𝐺 subject to identification constraints stated above, is 

expressed as 

𝐿𝐿(𝚫𝚫) =

∏ ∏ �∫ ⋯ ∫ ∏ �∏ 𝑃𝑃�𝑦𝑦𝑖𝑖𝑗𝑗(𝑔𝑔) = 𝑙𝑙�𝜽𝜽𝑖𝑖 , 𝒂𝒂𝑗𝑗 , 𝒅𝒅𝑗𝑗 , 𝜆𝜆𝑗𝑗(𝑔𝑔), 𝜂𝜂𝑖𝑖𝑗𝑗�I�𝑦𝑦𝑖𝑖𝑗𝑗=𝑗𝑗�𝐶𝐶𝑗𝑗−1
𝑗𝑗=0 � 𝑁𝑁�𝜽𝜽𝑖𝑖�µ𝑔𝑔, 𝚺𝚺𝑔𝑔�𝑑𝑑𝜽𝜽𝑖𝑖𝑑𝑑𝜂𝜂𝑖𝑖1. . 𝑑𝑑𝜂𝜂𝑖𝑖𝑖𝑖

𝑖𝑖
𝑗𝑗=1 �𝑁𝑁𝑔𝑔

𝑖𝑖=1
𝐺𝐺
𝑔𝑔=1  

. (3)               

Here I�𝑦𝑦𝑖𝑖𝑗𝑗 = 𝑙𝑙� is an indicator function and it takes the value of 1 when 𝑦𝑦𝑖𝑖𝑗𝑗 = 𝑙𝑙  and 0 otherwise. 

Equation 3 is maximized to obtain model parameter estimates, 𝚫𝚫�. The marginal likelihood in its 

plain form in Equation 3 involves a (2 + 𝐽𝐽)-dimensional integral (assuming 𝜽𝜽𝑖𝑖 is 2-dimensional), 

which is computationally prohibitive when 𝐽𝐽, the number of common items, is large.  Instead, the 

marginal likelihood can be rewritten as follows, exploiting dimension reduction,  

𝐿𝐿(𝚫𝚫) =

∏ ∏ ∫ 𝑁𝑁�𝜽𝜽𝑖𝑖�µ𝑔𝑔, 𝚺𝚺𝑔𝑔� ∏ �∫ �∏ 𝑃𝑃�𝑦𝑦𝑖𝑖𝑗𝑗(𝑔𝑔) = 𝑙𝑙�𝜽𝜽𝑖𝑖 , 𝒂𝒂𝑗𝑗 , 𝒅𝒅𝑗𝑗 , 𝜆𝜆𝑗𝑗(𝑔𝑔), 𝜂𝜂𝑖𝑖𝑗𝑗�I�𝑦𝑦𝑖𝑖𝑗𝑗=𝑗𝑗�𝐶𝐶𝑗𝑗−1
𝑗𝑗=0 � 𝑑𝑑𝜂𝜂𝑖𝑖𝑗𝑗�𝑖𝑖

𝑗𝑗=1
𝑁𝑁𝑔𝑔
𝑖𝑖=1

𝐺𝐺
𝑔𝑔=1 𝑑𝑑𝜽𝜽𝑖𝑖.   

(4) 

The derivation from Equation 3 to Equation 4 uses the simple calculus conclusion that we have 

∫ ∫ 𝑓𝑓(𝑥𝑥1)𝑓𝑓(𝑥𝑥2)𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2 = ∫ 𝑓𝑓(𝑥𝑥1) 𝑑𝑑𝑥𝑥1 × ∫ 𝑓𝑓(𝑥𝑥2) 𝑑𝑑𝑥𝑥2 when 𝑥𝑥1 and 𝑥𝑥2 are independent. As 

shown in Equation 4, the joint distribution conveniently factors into (𝐽𝐽 + 1) terms that are 

mutually independent, hence the (2 + 𝐽𝐽)-dimensional integral is converted into a series of 

iterated integrals whose dimensionality is 3.  

Despite the computational efficiency of analytic dimension reduction, if readers want to 

fit the MGTT model using general-purpose software, such as Mplus4, they need to be aware that 

 
4 Other software packages, such as flexMIRT, may handle dimension reduction differently.  
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this benefit may not always be fully utilized. That is, Mplus will only enable dimension 

reduction when the model is expressed in a typical bi-factor form, i.e., (1) the loadings 𝜆𝜆𝑗𝑗(𝑔𝑔) are 

freely estimated while fixing the nuisance factor variances to 1, and (2) there is only one group. 

Without dimension reduction, the number of numeric integrations is high enough that only 

Monte Carlo integration (in contrast to quadrature integration) is feasible. The idea of MC 

integration is to draw a random sample from a given distribution and then compute sample 

average. Based on the MC principle, the sample average provides a consistent estimate of the 

integral as sample size goes to infinity. As one can conveniently draw samples from a 

multivariate distribution, the MC integration is much more feasible, computation wise, than 

quadrature-based integration, and even so, it is extremely slow.  

Two other full information5 based methods that serve as alternatives to marginal ML are 

Metropolis-Hastings Robbins-Monro (MH-RM; Cai, 2008, 2010) and Markov chain Monte 

Carlo (MCMC; Patz & Junker, 1999; Robert & Casella, 1999; Wang et al., 2013; Wang & 

Nydick, 2015). MCMC methods circumvent intractable analytic or numerical integrations; 

however, they can be computationally intensive for complicated models because they typically 

require a large Monte Carlo sample size or a long chain to converge. MH-RM, as the name 

entails, combines elements from MCMC with stochastic approximation. It has a strict 

convergence criterion reminiscent of conventional maximization routines, and it has been 

successfully used for calibrating multigroup, multilevel, and multidimensional IRT models (Cai, 

2010b). Although MH-RM is computationally much faster than MCMC (Cai, 2010a; Edwards, 

2010), other studies found that MCMC outperformed MH-RM in terms of estimation accuracy in 

 
5 We used “full-information” to be in contrast to “limited-information” weighted least square methods, see Remark 
II below for details. 
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non-linear factor models in the presence of item cross-loadings (i.e., an item measures multiple 

factors) and when latent dimensions are highly correlated (Wang & Nydick, 2015).  

 In this paper, we will focus on the MCMC algorithm by treating MGTT from a Bayesian 

structural equation modeling (SEM) perspective. The advantage is, when the concurrent 

calibration fails to converge either due to data idiosyncrasy or model complexity (in both cases, 

MH-RM also encounters convergence challenges), MCMC can easily accommodate a divide-

and-conquer type of staged estimation approach by handling uncertainties in separate stages of 

the estimation well, whereas other methods would have treated parameters obtained from a 

preceding stage as “fixed.” Details regarding this advantage are presented in the subsection 

below. For MCMC, non-informative or weakly informative priors are used for all model 

parameters to reduce the effect of priors on parameter estimation to the largest extent.  

Multi-Stage Estimation 

Multi-stage estimation alleviates the challenge of estimating MGTT concurrently by only 

needing to estimate a single group two-tier model that is well studied (Cai, 2010b). Take a two-

cohort design as an example. In stage I, a single group two-tier model is fitted using MCMC on 

the data set from the first cohort, although it could be any cohort arbitrarily chosen from the full 

data set. MCMC outputs the posterior mean and standard deviation of all model parameters. In 

stage II, the estimated posterior mean and standard deviation of the main loadings and threshold 

parameters of common items (shared between two cohorts) are used as informative priors and 

again, a single group two-tier model is fitted on the data set from the second cohort. The 

informative priors help fix the scale in stage II, and as we make it explicit in Remark I below, 

only informative priors of the loadings on the main factors need to be fixed whereas the loadings 

on the nuisance factors (or equivalently the variance of the nuisance factors) do not necessarily 
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need to be fixed, which allows more flexibility to maximize model fit6. The specific non-

informative priors for all other model parameters are presented in the simulation section. Despite 

the informative priors, the posterior means of those common item parameters may still be 

updated, albeit slightly, in stage II estimation for cohort 2 data. To make sure that the change 

score estimates from both cohorts are on the same exact scale, a stage III estimation proceeds by 

fitting the single group two-tier model again on cohort 1 data but fixing the common item 

parameters (i.e., loadings on the main factors and thresholds) to their estimated posterior means 

from stage II. For data sets that contain more than two cohorts, this multi-stage estimation will 

proceed similarly but with more stages. For instance, with a three-cohort design, one will start 

with data from cohort 1, then informative priors obtained from cohort 1 will be passed on to 

cohort 2, and then the priors will be updated again and passed on to cohort 3. After this forward 

passage of information is finished, the common item parameters will be fixed and the fixed 

parameters will be passed on back to cohort 2 and cohort 1 to ensure that the latent trait estimates 

from three cohorts are on the exactly same scale. Please see Figure 2 for an illustration. 

Insert Figure 2 Here 

 

Remark I. When ignoring the residual dependence, the two-tier model reduces to a 

simple two-dimensional IRT model, or in a simplest case, a bi-factor model reduces to a 

unidimensional model. Here, we want to emphasize that the introduction of nuisance factors 

helps repartition the residual variances, without affecting the strength of relationships (i.e., 

standardized loadings) between the main factor and item responses. This point is essential to 

understand the constraints needed to establish invariance of bi-factor models across groups or 

 
6 The informative priors are also imposed on the threshold parameters to help fix the origin of the scale. 
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longitudinally. That is, in a simple unidimensional two-parameter IRT model, the constraints 

needed to establish the scale is either to fix one item discrimination and difficulty parameter, or 

to fix the mean and variance of θ at certain constants. For a bi-factor model structure, written in 

factor analytic format as 

𝑦𝑦𝑖𝑖𝑗𝑗
∗ = 𝜆𝜆𝑗𝑗𝜃𝜃 + 𝛾𝛾𝑗𝑗𝜉𝜉 + 𝜀𝜀𝑖𝑖𝑗𝑗, 

fixing a 𝜆𝜆𝑗𝑗 is sufficient to fix the metric of 𝜃𝜃, and there is no need to fix 𝛾𝛾𝑗𝑗. The contribution of 

𝛾𝛾𝑗𝑗𝜉𝜉 is to repartition the residual variance of 𝜀𝜀𝑖𝑖𝑗𝑗 relative to the variance of 𝑦𝑦𝑖𝑖𝑗𝑗
∗ , i.e., 𝑣𝑣𝑣𝑣𝑣𝑣�𝜀𝜀𝑖𝑖𝑗𝑗� =

𝑣𝑣𝑣𝑣𝑣𝑣�𝑦𝑦𝑖𝑖𝑗𝑗
∗ � − 𝜆𝜆𝑗𝑗

2𝑣𝑣𝑣𝑣𝑣𝑣(𝜃𝜃) − 𝛾𝛾𝑗𝑗
2𝑣𝑣𝑣𝑣𝑣𝑣(𝜉𝜉), whereas in a simple unidimensional model written as 

𝑦𝑦𝑖𝑖𝑗𝑗
∗ = 𝛽𝛽𝑗𝑗𝜃𝜃 + 𝜁𝜁𝑖𝑖𝑗𝑗, 

the residual variance is 𝑣𝑣𝑣𝑣𝑣𝑣�𝜁𝜁𝑖𝑖𝑗𝑗� =  𝑣𝑣𝑣𝑣𝑣𝑣�𝑦𝑦𝑖𝑖𝑗𝑗
∗ � − 𝛽𝛽𝑗𝑗

2𝑣𝑣𝑣𝑣𝑣𝑣(𝜃𝜃). Note that 𝛽𝛽𝑗𝑗 ≠ 𝜆𝜆𝑗𝑗 but the 

standardized factor loadings are equivalent, i.e., 𝜆𝜆𝑗𝑗�𝑣𝑣𝑣𝑣𝑣𝑣(𝜃𝜃)

�𝜆𝜆𝑗𝑗
2𝑣𝑣𝑣𝑣𝑣𝑣(𝜃𝜃)+𝛾𝛾𝑗𝑗

2𝑣𝑣𝑣𝑣𝑣𝑣(𝜉𝜉)+𝑣𝑣𝑣𝑣𝑣𝑣(𝜀𝜀𝑖𝑖𝑗𝑗)
= 𝛽𝛽𝑗𝑗�𝑣𝑣𝑣𝑣𝑣𝑣(𝜃𝜃)

�𝛽𝛽𝑗𝑗
2𝑣𝑣𝑣𝑣𝑣𝑣(𝜃𝜃)+𝑣𝑣𝑣𝑣𝑣𝑣(𝜁𝜁𝑖𝑖𝑗𝑗)

.  

There are two take-away messages from this remark. First, when fitting a bifactor model (or two-

tier model), in our concurrent calibration, we only need to constrain the loadings on the target 

factor,  𝜆𝜆𝑗𝑗 (or  𝒂𝒂𝑗𝑗 from Equation 4, and of course item threshold parameters,  𝒅𝒅𝑗𝑗), to be equal 

across groups and across time, without putting any equality constraints on nuisance factor 

loadings (i.e., 𝛾𝛾𝑗𝑗) across groups. Similarly, in the three-stage calibration, only informative priors 

on  𝒂𝒂𝑗𝑗 and  𝒅𝒅𝑗𝑗 are needed. Second, ignoring nuisance factors will not bias the point estimation of 

𝜃𝜃, although its standard errors may inflate. 

Remark II. Aside from the full information method, limited information weighted least 

square estimation (WLS) is a viable alternative for the two-tier model. WLS uses first-order and 

second-order marginal proportions obtained from response contingency tables to facilitate 

parameter estimation.  The main idea is to find item threshold and loading parameter values such 

that they minimize the weighted deviations between the model-implied correlation matrix and 
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the sample tetrachoric correlation matrix.  Because WLS usually requires a large sample to 

precisely estimate a full weight matrix (Flora & Curran, 2004; Muthén et al., 1997), researchers 

have suggested using only the diagonal elements of the weight matrix for estimation, leading to 

the diagonally weighted WLS estimators.  Parameter estimates obtained from WLS can be 

translated to IRT parameters (Takane & de Leeuw, 1987). Because WLS works directly with the 

item response contingency table, it permits the fitting of high-dimensional models with much 

reduced computation time as compared to ML based methods. Moreover, because WLS is 

developed within the SEM framework, off-the-shelf absolute model fit indices such as the root 

mean squared error of approximation (RMSEA), the Tucker Lewis Index (TLI), and the 

confirmatory fit index (CFI) (Bentler, 1990) can be used to evaluate absolute model fit, and chi-

squared difference tests can be used to evaluate relative fit of nested models. A widely 

recognized limitation of the WLS approach, however, is the difficulty of estimating tetrachoric 

(or polychoric) correlations, especially in the presence of missing data. This insufficiency of 

handling missing data makes WLS not suitable for the concurrent estimation of the MGTT 

model that may inherently have missingness by design. However, we still use WLS for single 

group two-tier model in the real data illustration to gather complementary model fit information.  

Simulation Study 

We conducted three simulation studies to compare the performance of MGTT via concurrent 

calibration and multi-stage estimation (denoted as “Concurrent” and “Multi-stage” respectively 

hereafter). A single unidimensional model (denoted as “Single” hereafter) that ignores the multi-

cohort repeated measure structure, which is the current status quo in many psychology and health 

measurement studies, was also included in the study as a baseline. The main evaluation criterion 

is the recovery of individual latent change scores, along with the latent scores at both baseline 

https://link.springer.com/article/10.3758/s13428-015-0619-7#ref-CR9
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and follow up(s). In study I, we considered a two-cohort two-time points design, with eight 

manipulated conditions. In study II, we considered a three-cohort two-time points design, with 

four manipulated conditions, and in study III, we considered a two-cohort three-time points 

design, with two manipulated conditions. While study I was more comprehensive and it was 

consistent with the data design from our motivating real data example, study II and III were 

included to ensure generalizability of the findings. 

Study I Design. Eight manipulated conditions were considered to imitate the real data collection 

design scenarios as closely as possible while allowing for generalization of the results. Assume 

there were two time points and two study cohorts and assume full measurement invariance across 

cohorts and longitudinally. Sample size was fixed at 800 per cohort throughout all three 

simulation studies to be consistent with the real data example. Two assessment designs were 

considered to follow ADNI EF and language assessment domain respectively. Item 

discrimination was simulated from U(0.70, 1.65) (Jiang et al., 2016), and thresholds were 

generated based on ADNI language domain analysis results. The same true item parameters were 

used in both item designs so that results from them are directly comparable. Table 1 presents the 

true item parameters for simulation studies.  

Insert Table 1 here. 

As shown in Table 1, item design I results in a complete overlap of items across two 

cohorts, establishing a strong link for a common scale across groups, whereas the percentage of 

overlapped items between two measurement occasions is only 50%. Hence, out of 9 items in 

total, only three items load on nuisance factors yielding non-zero γ’s. In item design II, there is 

50% overlap of items between two cohorts, whereas there is 100% sharing of items across two 

measurement occasions. As a result, all 9 items have non-zeros γ’s. Item design I leads to a 
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simpler MGTT model with only 5 latent factors (2 main factors and 3 nuisance factors) whereas 

an 11-factor model is needed for item design II. Table 2 presents the design details for generating 

true 𝜃𝜃’s. Person designs I & II generate a bivariate normal distribution of 𝜃𝜃’s such that the 𝜃𝜃 

correlations between baseline and follow up time points are manipulated via the covariance 

parameter. These first two designs differ in the level of correlation and the impact between the 

two cohorts. Person designs III & IV consider specific change pattern over time, which results in 

a high serial correlation between baseline and follow up traits at around 0.85. 

Insert Table 2 here. 

Estimation. We used MCMC implemented in Mplus for model estimation and used default non-

informative or weakly informative priors on all model parameters except in stage II of the three-

stage estimation method described above. Specifically, for factor loadings and thresholds, a 

normal distribution N(0, 5) (where 5 is the prior variance) was used as prior. With MCMC 

estimation, factor loading reflection (i.e., sign change) can be a challenge as the iterative process 

constructs a bimodal posterior distribution by sampling positive and negative values for the 

loadings but converging on neither estimate (Bauer, et al., 2013). Mplus unfortunately does not 

support truncated normal priors for loadings in its current version. This may not be a serious 

problem for loadings on main factors because there are more than three items loaded on a single 

factor, and only flipping all signs of the loadings simultaneously would result in an equivalent 

model (i.e., the item covariance matrix stays intact), which happens rarely. Loadings on nuisance 

factors, however, may be problematic because only two items load on each nuisance factor, and 

the loadings are constrained to be equal for model identification purposes. In this case, flipping 

the sign would happen much more often. We therefore decided to estimate the variance of the 

nuisance factors instead. We used inverse-Gamma (-1, 0) as priors for nuisance variances. For all 
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factor means that are freely estimable, we used a N(0, ∞) prior, and for factor covariance matrix, 

we used an inverse-Wishart (IW) prior ��1 0
0 1� , 3�. When a certain factor variance was fixed 

during estimation, say variance of 𝜃𝜃1 was fixed, then IW(0,3) and IW(1,3) were used as priors 

for cov(𝜃𝜃1, 𝜃𝜃2) and var(𝜃𝜃2) respectively.  

The chain length was set at 50,000. Model convergence was assessed using the default 

Gelman-Rubin convergence criterion based on the potential scale reduction factor (PSR) for each 

parameter (Gelman & Rubin, 1992), and a cutoff of 1.1 was used (Muthén & Muthén, 1998-

2017). Only a single chain was used, and discarding the first half as burn-in, the last half of the 

iterations was split into two quarters and the PSR factor was computed for these two quarters. By 

default, If PSR>1.1 by the end of the chain length, we increase the chain length to 100,000, and 

if PSR continues to be higher than 1.1, we conclude MCMC does not converge.7 We set 

“THIN=1” by default, which implies every MCMC iteration is saved. Fifty replications were 

conducted per condition.  

Results for Simulation Study I.  

Table 3 presents the recovery of the latent traits at baseline and follow up and the 

recovery of change scores, in terms of bias, root mean squared error (RMSE), mean absolute bias 

(ABS), and mean standard error (SE) of the corresponding trait (or change score) estimates, 

under item design I. Table 4 presents the same results under item design II. In table 3, results 

from all three methods (i.e., single, concurrent, and 3-stage) are included whereas in table 4, 

results from only single and 3-stage methods are included because concurrent calibration did 

converge under item design II. 

 
7 We also tried to increase the chain length to 150,000 but it still failed to converge, with PSR consistently staying 
above 2. For the conditions where concurrent calibration did not converge, none of the replications converged.  
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Insert Table 3 here 

In Table 3, the four person designs correspond to those defined in table 2. Several trends 

can be observed from the results. First, the three methods produce nearly comparable results 

under person design I, although the simplest single method generates slightly higher RMSE, 

mean ABS, and mean SE. Unsurprisingly, the results based on change score tend to magnify the 

difference among the three methods more than merely looking at the scores as either baseline or 

follow up. There is no appreciable difference between the results from cohort 1 versus cohort 2. 

Second, under three other person designs, the performance of the three methods begins to 

diverge. That is, both concurrent and 3-stage methods still generate almost the same results, but 

the single method produces much larger RMSE, mean ABS and mean SE, especially for the 

change scores. The mean bias is not sensitive to differentiate different methods. Although person 

designs II-IV all have unique features, the results and trend from them seem to be quite 

comparable. Therefore, one conclusion to make is, when there is high correlation between 

baseline and follow up data, ignoring such correlations would not bias the traits or change score 

estimates, but would make such estimates less efficient as reflected by the large standard error 

and hence large RMSE from the single method. Further, the difference between 𝜃𝜃 distributions 

across two cohorts (which is called impact in IRT DIF literature) does not seem to have much 

effect on trait recovery, as the results from design III and IV are close. Third, an interesting 

finding about mean SE is that, under person designs II-IV, the concurrent method generates 

slightly higher mean SE than the 3-stage method, and such difference is more salient when 

looking at the mean SE of change scores especially under person design II. This may be because 

the MGTT model contains many parameters in the concurrent calibration, such that estimation 

instability contributes to the larger SE.  
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Insert Table 4 here 

Although concurrent method is not shown in Table 4, the same patterns show up in table 

4 as well. That is, under person design I, both single and 3-stage method produce similar results 

across both cohorts, but the 3-stage method outperforms the single method by a large margin 

under person designs II-IV. Hence, combining results from both tables, we recommend the 3-

stage estimation method for its robustness and estimation accuracy. If the model converges, 

concurrent calibration is also recommended as it is easier to implement than the 3-stage method, 

although the standard errors of latent traits and the change scores may be slightly inflated.  

Study II Design and Results.  Table 1 presents the true item parameters for the three-cohort 

two-time design. As in study I, we also considered two item designs, one with 50% item overlap 

overtime but 100% item overlap across cohorts, whereas the other one with 100% item overlap 

overtime but 50% item overlap across cohorts. As to person parameters, we followed the first 

two designs in Table 2 to generate true θ’s for cohorts I and II, and for cohort III, we used 

𝜃𝜃~𝑚𝑚𝑣𝑣𝑚𝑚([0.2, 0.4]′, 𝚺𝚺), where 𝚺𝚺 = [1, 0.4; 0.4,1] for design I and 𝜃𝜃~𝑚𝑚𝑣𝑣𝑚𝑚([0.25, 0.30]′, 𝚺𝚺), 

where 𝚺𝚺 = [1, 1.1; 1.1,1.3] for design II. The two person designs vary mainly by the level of 

correlation of main 𝜃𝜃 across two time points, i.e., median (0.4) and high (≈ 0.9). Fifty 

replications were conducted per condition, and the same estimation methods were considered. 

The only difference is for the multi-stage estimation, instead of performing three stages of 

estimation, we performed five stages of estimation as shown in Figure 2. Note that since the 

number of item parameters remain the same between study I and II (i.e., comparing Table 1 and 

5), and because we assume measurement invariance across cohorts, including an additional 

cohort is like increasing sample size. Although the mean and variance of latent variables are 

freely estimated in cohort III, resulting in a slight increase in the total number of model 
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parameters, it is expected that different methods should not encounter extra convergence issues 

compared to study I. 

Insert Tables 5, 6 here 

 Tables 5 and 6 present the latent trait and change score recovery for person designs I and 

II respectively. The same results pattern shown in simulation study I continue to hold here. That 

is, for item design I, all three methods converged properly across all replications. When the level 

of correlation of 𝜃𝜃 across two time points is medium, 𝜃𝜃 recovery at both baseline and follow up 

time points appear to be similarly precise across three methods, although the single method tends 

to produce slightly larger RMSE, mean absolute bias and mean SE, especially for change scores. 

When the level of correlation of 𝜃𝜃 across two time points is high, the improvement of MGTT 

over traditional single method is much more salient. Under item design II, again the concurrent 

calibration fails to converge even when the sample size increased by 50% (compared to study I 

due to the inclusion of cohort 3). Otherwise, the same conclusion holds as well. That is, the 

multi-stage and single method produce similar results for person design I, but the multi-stage 

method produces more accurate change score estimates than the single method for person design 

II. Across three cohorts, it appears that the bias is similar, but the RMSE and mean ABS are 

considerably smaller in cohort 3 than those in cohort 1 in person design II. This is merely due to 

the current data generation scheme for person design II, i.e., the correlation between 𝜃𝜃’s over 

time is .88, .95, and .96 for the three cohorts respectively. Higher correlation results in smaller 

range of change scores, and indeed, the “true” change scores across three cohorts have mean 

values of 0.054, 0.053, and 0.050 and standard deviation values of 0.540, 0.349, and 0.313, 

respectively. Because the true range of change scores are smaller in cohort 3, the RMSE and 
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mean ABS are also smaller. In addition, due to the high correlation in cohort 3, the improvement 

of two MGTT methods over the single method is also largest in cohort 3. 

Study III Design and Results.  In this study, a two-cohort three-time design was considered. 

Given that both study I and study II provide consistent evidence regarding the two item designs, 

we only focused on item design I here. That is, there is 50% item overlap between any two time 

points and 100% item overlap between two cohorts. Each item is shared across, at most, two 

time points. Note that if an item is shared across more than two time points, then instead of 

fixing the loadings on the nuisance factor to be 1 and let nuisance factor variance to be freely 

estimated, we can instead fix the nuisance factor variance to be 1 and let the loadings on the 

nuisance factor be freely estimated. This would ensure maximal model flexibility while still 

guaranteeing model identifiability. The true item parameters were presented in Table 1, and there 

were 12 items in total instead of 9 as in the previous studies. Two person designs were 

considered, and they differ by the level of correlation over time. Specifically, for design I, cohort 

I latent trait was generated from a multivariate normal distribution, 𝜽𝜽~𝑚𝑚𝑣𝑣𝑚𝑚([0, 0.2, 0.3]′, 𝚺𝚺), and 

cohort II latent trait was generated from  𝜃𝜃~𝑚𝑚𝑣𝑣𝑚𝑚([0.1, 0.3,0.45]′, 𝚺𝚺), where 𝚺𝚺  has diagonals 1 

and off-diagonals 0.4 (Kuhfeld & Soland, 2022).  For design II, cohort I latent trait was 

generated from 𝜃𝜃~𝑚𝑚𝑣𝑣𝑚𝑚([0, 0.05,0.2]′, 𝚺𝚺) and cohort I latent trait was generated from 

𝜃𝜃~𝑚𝑚𝑣𝑣𝑚𝑚([0.5, 0.55,0.3]′, 𝚺𝚺), where 𝚺𝚺 has diagonals 1 and off-diagonals 0.85 (again following 

ADNI language data analysis results). Note for cohort II design II, we intentionally considered a 

non-monotone growth pattern just so that the results are not only restricted to monotone growth 

patterns.  Also note that the number of parameters slightly increased compared to study I due to 

the inclusion of 3 more items, but the number of nuisance factors was 6, in between 3 and 9 in 
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the two designs in study I. In addition, adding a third time point also brought in additional data 

and hence, all three methods converged successfully across all replications. 

Insert tables 7  here 

Table 7 presents the latent trait and change score recovery from all three methods under the two 

person designs. Unsurprisingly, under person design I, there is not much difference among the 

three methods in terms of the precision of both latent traits and the change scores. Under person 

design II, both concurrent and multi-stage estimation outperform the single method by a large 

margin. This is reflected in the smaller RMSE, smaller mean ABS, and smaller mean SE for both 

latent trait and change scores across all three cohorts. 

 

Real Data Illustration: ADNI  
 

In this section, we used two-cohort repeated measure data from the Alzheimer’s Disease 

Neuroimage Initiative (ADNI) to demonstrate different approaches that can be used to extract 

useful individual-level change scores. ADNI has had several funding cycles, with somewhat 

different enrollment goals, and we used data from ADNI 1 and ADNI 2 / ADNI GO cohorts. 

Specifically, ADNI 1 enrolled people with normal cognition, mild cognitive impairment (MCI), 

and AD in a 1:2:1 ratio during 2004 to 2010. In ADNI 2/ ADNI GO which occurred between 

2009 and 2017, participants from ADNI 1 who met the enrollment criteria were carried forward 

for continued monitoring, while new participants were added to further investigate the evolution 

of AD. Overall, ADNI enrolled participants between the ages of 55 and 90 who were recruited at 

57 sites in the United States and Canada. After obtaining informed consent, participants 

undertake a series of initial tests that are repeated at intervals over subsequent years, including a 

clinical evaluation, neuropsychological tests, MRI, and PET scans, among others. We focus on 
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the cognitive battery that is administered at each study visit of ADNI. The battery includes tests 

on four main domains (i.e., memory, executive functioning, language, and visuospatial 

functioning), and granular data are available from the LONI website (http://adni.loni.usc.edu/). 

We aimed to extract individual learning effects from longitudinal ADNI data (i.e., both 

ADNI 1 and ADNI 2 / ADNI GO cohorts), which are quantified as change scores between 

baseline visit and 6-month follow up on the cognitive batteries. We hypothesized that individuals 

who were less able to learn as evidenced by either decrement in functioning between time points 

or small amounts of improvement compared to others would be at higher risk of conversion to 

AD (Jutten et al., 2020).  Combining data from two study cohorts offers increased power due to 

larger sample size and enhanced external validity due to greater heterogeneity in samples. Only 

two time points were used because from the sponsor’s perspective, it is cost-efficient to identify 

patients who are at highest risk of AD within the shortest time possible. We acknowledge that 

one follow-up point would enable enrollment after 6 months of contact, which may be feasible 

and desirable in fast-paced clinical trials, but necessarily limits the amount of longitudinal data 

available to characterize who could be at highest risk based on changes in cognition. 

Because different sets of items (with some overlapping items) are used in different study 

cohorts, co-calibration, which is a valuable form of data harmonization, is needed to produce 

scores on the same metric. This is essential to facilitate combining data from different studies. 

Previous studies (Choi et al., 2020; Crane et al., 2012, 2021) have used data from ADNI 1 

baseline visit to calibrate IRT models and fixed the item parameters in follow up visits and 

ADNI 2 / ADNI GO to extract factor scores at each time point and from each cohort all 

separately. In this section, we compared this status-quo approach versus the MGTT integrated 

approach, in terms of the raw individual latent change score, as well as the power of detecting 

http://adni.loni.usc.edu/
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highest risk of conversion from MCI to AD using the extracted change score as predictors. Due 

to space limitations, only two domains were considered, Language and EF, as these two domains 

represent two different item designs that lead to different choices of estimation approaches: 

three-stage estimation versus concurrent calibration respectively. EF is also unique for 

illustration as we included additional nuisance factors to explain shared variances among items 

using the “clock method” (Gibbons et al., 2012).  

Sample.  For the language domain, the sample size for baseline and follow-up time points for 

ADNI 1 are 781 and 780 respectively, and for ADNI2/GO are 835 and 835 respectively. For the 

EF domain, the sample size for baseline and follow-up time points for ADNI 1 are 782 and 780 

respectively, and for ADNI2/GO are 835 and 832 respectively. There is little to no data attrition 

during the 6-month follow up.  

Item Design. Table 8 presents the item designs for ADNI1 and ADNI 2 / ADNI GO language 

and EF domains. As shown, there is a great overlap between the test batteries to establish 

common scales. For the language domain, there are six items from the Mini-Mental State 

Examination (MMSE), three language tasks in the AD Assessment Schedule - Cognition 

(ADAS-Cog), six language items from the Montreal Cognitive Assessment (MoCA), and three 

items that were not part of a global cognition composite. Four MMSE items were dropped for 

modeling because they were so easy that very few people got them wrong. The Category 

Fluency-Vegetable item was only used in ADNI1, and the four MoCA items, Animal Naming –

Rhino, Sentence Repetition Task 1, Sentence Repetition Task 2, and Letter F Fluency, were only 

included in ADNI2 / ADNIGO. The baseline (initial visit) and the follow-up (six-month visit) in 

both phases used the same items. As to the EF domain, there were nine items used in both ADNI 
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1 and ADNI2 / ADNIGO cohorts at both visits. Five of these items shared the same common 

variance of “clock method.” 

Insert Table 8 here. 

Analysis. The analysis procedure included the following: (1) variable recoding; (2) model 

selection; (3) extraction of individual change scores; and (4) uses of change scores for predicting 

conversion from MCI to AD. These four steps were conducted separately for each domain.  

Collapsing response categories. In our preliminary check, we found that sparse responses (i.e., 

too few endorsements of certain response options of an item) would make the MCMC algorithm 

fail to converge, just because there is not enough information to properly estimate the 

corresponding threshold parameters.  So, we collapsed categories to ensure proper convergence.  

Specifically, for ADNI1, we merged score categories with less than 20 individuals into 

the adjacent category for items with more than two categories and dropped binary items which 

have less than 20 people in one response category. Specifically, for items with more than two 

response categories, the first and the last few categories in many cases had response counts less 

than 20, so the first few categories were merged one category up and the last few categories were 

merged one category down. For ADNI2 / ADNIGO, we kept the categories the same as ADNI1 

for the common items because the item parameters were constrained to be equal across the two 

time points to establish a common longitudinal scale. For items not in ADNI1, we still used 20 as 

a cutoff for collapsing categories. We dropped Four MMSE and two animal naming items from 

the language domain since they had fewer than 20 people who got each item incorrect. Details of 

recoding for the two target domains are shown in the Supplemental Material. 

Model Selection. Per each cohort and each domain, we first compared a longitudinal graded 

response model (GRM) with and without correlated residuals. The longitudinal GRM is a two-
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dimensional GRM that contains two correlated main factors governing the responses from each 

time point. The model with correlated residuals contains nuisance factors for each of the 

common items between the two time points.  Note that in the EF domain, we also included an 

additional secondary factor to account for the Clock Drawing methods effect as in Gibbons et al. 

(2012), see Figure 1 for details. The prior psychometric validation work conducted by the ADNI 

research team (e.g., Choi et al., 2020; Crane et al., 2012, 2021; Gibbons et al., 2007) allows us to 

make assumptions about measurement invariance over cohorts and time, which in turn allows for 

the focus on studying change in the latent variables over time and how best to associate and 

explain such change with external variables (i.e., time to conversion from MCI to AD). 

However, we still evaluated the invariance assumption at the item level through the posterior 

predictive p-(PPP) values produced as a byproduct of the MCMC algorithm. We used WLSMV 

and MCMC implemented in Mplus for parameter estimation at this step. For MCMC, default 

non-informative priors described in the simulation study section were used on all unknown 

parameters. The only exception, as the method entails, is when we conducted multi-stage (in this 

case, 3-stage) estimation, in which we used the posterior mean and standard deviation of 

common item parameters from a preceding step in the next step.  

For WLSMV, we used criteria of CFI≥0.95, TLI≥0.95, and RMSEA≤0.06 to evaluate 

whether a fit is acceptable (Hu & Bentler, 1999). As to MCMC, Mplus did not provide Deviance 

Information Criterion (DIC; Spiegelhalter, et al., 2002) as there are different versions of DIC for 

hierarchical models and no census has been reached. Indeed, DIC will be computed differently 

depending on whether the joint likelihood or marginal likelihood is used. Furethermore, if the 

marginal likelihood is used, DIC will be computed differently depending on the level of the 

model at which the marginalization is computed (Zhang, et al., 2019). Mplus reports PPP 
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value(Asparouhov & Muthén, 2021, Levy et al., 2009). However, we caution against using the 

overall PPP value as an evaluation of overall absolute model fit because it is computed based on 

the classical likelihood ratio chi-square test (see Equation 25, p. 30, Mplus Bayesian technical 

manual) that assumes multivariate normality of the data. Instead, PPP values reported at the item 

level provide much fine-grained information which is informative to make small adjustments of 

the model (i.e., relaxing certain measurement invariance constraints) to improve fit. PPP values 

below 0.05 indicate poor fit. Formally checking for measurement invariance was not the focus of 

the current study. Nevertheless, in the two-tier GRM, we constrained item parameters to be 

invariant over time, if there are items with PPP values less than 0.05, we could relax the 

longitudinal invariance assumption and re-evaluate whether PPP values become acceptable.  

Insert Table 9 here 

Table 9 presents the model fit results from both WLS and MCMC. When using WLS, we 

have CFI, TLI, and RMSEA as absolute fit indicators and chi-square difference test for 

comparing nested models. Results show that for both domains and cohorts, the longitudinal 

model with correlated residuals exhibits much better fit than the model without correlated 

residuals. The model with correlated residuals generated acceptable PPP-values (i.e., 0% of the 

items had extremely small PPP-values), although those from the model without correlated 

residuals also seem to be acceptable. PPP-values may be less sensitive as a model fit index in this 

application. Using WLS as an alternative for the purpose of evaluating model fit provided useful 

complementary evidence. 

MCMC Estimation. For the EF domain, we fit the MGTT model on the combined data via 

concurrent calibration, but for the language domain, MGTT failed to converge. We thus used the 

three-stage estimation approach for the language domain. As described earlier, we achieved scale 
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determinacy in stage II estimation by estimating parameters of common items toward their prior 

means obtained in stage I. We used PPP values to monitor the degree of shrinkage towards the 

prior mean, which yielded scale determinacy through fixing the common items via the prior 

while still maintaining reasonable model fit. During the three-stage estimation, none of the item 

level PPP-values were smaller than 0.05. Figure 3 shows the common item parameter estimates 

in stage I and stage II for the language domain from the 3-stage estimation approach, just to 

illustrate that using informative priors can fix the scale at stage II as the common item 

parameters hardly differed, although the uncertainty of the parameter estimates in stage I was 

well considered in stage II.  

Insert Figure 3 here. 

 
 We focused on the change score as possible indicators of risk of conversion from MCI to 

AD. Here the dependent variable is the time to conversion from MCI to AD. Results from the 

Single method were used as baseline. We first conducted K-means clustering of the change 

scores, aiming to find data-driven cutoff scores to bin participants into five categories: a lot 

better (in terms of cognitive domain at time 2), a little better, no change, a little worse, and a lot 

worse. Then we used the generated categorical indicator of change score as predictors in a Cox 

proportional hazard model to predict the time to conversion. We did not use raw change scores in 

the Cox model because that would impose a linear relationship between change score and rate of 

conversion. Table 10 presents the number of participants classified into each category per 

domain per method. As shown, the single method classified more individuals into the middle 

three categories whereas the spread of categories was broader with our recommended method.  

Insert Table 10 here. 
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Table 11 presents the results from Cox PH models, using the third cluster (i.e., no 

change) as the reference group. Hazard ratio, which is the ratio of the hazard rate in the 

respective cluster relative to the control cluster (i.e., 3rd cluster of no change), implies how often 

the conversion from MCI to AD occurs in the target cluster versus the control cluster over time. 

For instance, 0.55 in Table 11 implies that, according to the traditional single method, the hazard 

of conversion for participants who have a lot better language scores in the follow up assessment 

is only 55% of the that of participants whose language scores do not change in the follow up 

assessment; whereas 2.42 implies that, according to the concurrent method, the hazard of 

conversion for participants who have a lot worse EF scores in the follow up assessment is 2.42 

times higher than that of participants whose EF scores stay almost the same during the 6 month 

period. In sum, hazard ratios significantly different from 1.0 implies different hazard ratios of 

conversion in respective groups, and they are highlighted in Table 11. As shown, the clusters 

formed based on change scores estimated from the 3-stage or concurrent method predict 

conversion to AD much better than those from the single method. This real data example further 

supports our recommendation that the longitudinal model with correlated residuals (or MGTT if 

the model converges) should be used for multiple cohort repeated measure design.  

Insert Table 11 and Table 12 here 

Because a larger sample size in a cluster would yield higher statistical power, to further 

rule out the effect of cluster-level sample size differences from the two methods, we conducted 

two sensitivity analyses. In the first one, we recreated the 5 clusters from the “Single” method by 

ordering its change scores from smallest to largest and placed cutoffs such that the sample sizes 

per cluster were the same as those from the “3-stage/concurrent” method. This way, the 

confounding factor of sample size is eliminated from the comparison, whereas the actual patients 
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assigned to each cluster differ based on their change scores computed from respective methods. 

The results are presented in the first part of Table 12. The result is not much different from the 

“Single” method presented in Table 11, and still the results from the “3-stage/ concurrent” 

method show much stronger and useful signals. Similarly, we used the cluster size obtained from 

the “Single” method as a reference and adjusted the clusters from the “3-stage/concurrent” 

method accordingly. The results are presented in the second part of Table 12, and again there is 

not much difference except cluster 1 from the language domain. This sensitivity analysis further 

supports that the proposed method generates individual latent change scores that contain stronger 

signals as they are shown to be better predictors of conversion from MCI to AD.  

 

Discussion 

           Tests and surveys are routinely used in education to track students’ learning progress. 

Similarly, the advocacy of evidence-based practices in clinical psychology has also led to heavy 

reliance on tests and questionnaires (e.g., Garland et al., 2003) as regular outcome monitoring 

measures. Clinicians may use a patient’s change score on tests or clinical scales to assess the 

degree to which the patient responds to the treatment and exhibits progress.  Such information 

could also be used to influence decisions about subsequent treatment plans, health policies, and 

funding (Jacobson et al., 1984). Or cognitive neuropsychologists use lack of practice effects as a 

marker of cognitive decline, which may be a valuable input for a cost-effective strategy to select 

individuals who are at-risk for dementia for future interventions (Jutten et al., 2020). Tests used 

to measure individual change have been incorporated in large-scale research projects, such as the 

Patient-Reported Outcomes Measurement Information System (PROMIS), among others. 

Many of the instruments used in education and psychology are psychometrically 
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validated, multi-item surveys/questionnaires. The calibrated item parameters provide crucial 

reference points with which comparability within and across studies can be achieved, therefore 

substantially improving cumulative science and replication (Cai & Houts, 2021). For instance, a 

typical clinical trial design has patient recruitment in multiple sites, use of randomization, and 

multiple follow ups. In such cases, using extant instruments with well-calibrated IRT parameters 

is convenient for clinical researchers because not all trials have adequate sample size needed for 

stable IRT model calibration (e.g., Jiang et al., 2016). Hence, using data from a single cohort and 

a single time point for IRT model calibration and then fixing the item parameters in all 

subsequent uses is a strategy that is used in many circumstances. In contrast, we aim to leverage 

the advanced multiple group two-tier model (Cai et al., 2016) and MCMC algorithm to 

demonstrate the precision gain that this added model complexity can bring in terms of latent trait 

estimation. 

We study two complementary approaches: concurrent calibration of MGTT and multi-

stage estimation. The former approach is statistically optimal in that it utilizes all available data 

in one integrated model estimation. Yet, due to model complexity, convergence may not be 

reached, especially when sample size is small. The latter approach provides a robust alternative. 

In the multi-stage approach, to preserve continuity between separate analyses for parameters that 

carried over from one cohort to another, and to establish a common scale, the posterior mean and 

standard deviation of the common item parameters from one cohort are used as prior 

distributions in the analysis for the next cohort. The simulation results reveal that there is no 

appreciable difference between these two approaches and in some cases, the concurrent 

calibration may generate slightly inflated standard errors of latent trait and latent change 

estimates, whereas the multi-stage method performs consistently well across all manipulated 
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conditions. Both approaches outperform the status quo single method, and the difference was 

considerable when data from repeated measures are highly correlated. In terms of computation 

time, when we fixed the Markov chain length to 50,000 across the board, the concurrent 

calibration (when it converges) is more efficient than multi-stage estimation because for the 

latter, computation time adds up across different stages. To optimize computation time, one may 

let Markov chain stop if PSR is smaller 1.1 instead of letting the chain length reach 50,000 

universally because many stages in multi-stage estimation actually converge fast.    

Our real data study provides additional, strong, supportive evidence. Researchers have 

previously developed  composite IRT scores from the ADNI battery for memory (Crane et al., 

2012), executive function (Gibbons et al., 2012), and language and visuospatial (S. E. Choi et al., 

2020) using the single method. In each of these papers they evaluated comparative validity of 

composite scores by checking the strength of association between several imaging, fluid 

biomarker, and clinical comparisons with their composite scores and found that the composite 

scores outperform traditional scores such as total scores. In our real data example, we further 

show that the latent change scores derived from our recommended approaches provide an even 

stronger signal to predict risks of conversion from MCI to AD. This finding lends crucial 

external validity to the latent change scores derived from our recommended approaches. 

In summary, the goal of the current study is to extract precise latent change scores for 

each individual, which will then be submitted to further analysis, such as clustering and Cox PH 

model used in our real data example. Certainly, obtaining reliable individual change scores is of 

practical importance in its own right if the focus is on evaluating intervention effect at an 

individual level, such as assessing psychometrically significant intra-individual change (e.g., 

Wang & Weiss, 2017, Wang et al., 2020). Further, this analysis protocol is operationally simple, 
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and it can entertain a full suite of secondary analyses. However, caution needs to be exercised in 

extrapolating individual level intervention effects to the group level, as Mislevy et al. (1992) 

noted that, even using individually optimal latent proficiency or change score estimates, 

population inference can still be severely biased. Instead, a marginal inference procedure such as 

a latent regression model with an IRT model on the outcome side of the regression equation 

would produce unbiased population inference. That said, the latent regression model is not 

without limitations either. For instance, careful thoughts need to go into the selection of 

covariates in the latent regression model to ensure congeniality of additional secondary analysis 

using the latent scores produced therefrom (Xie & Meng, 2017). Plus, if the secondary analysis 

does not fall within run-of-the-mill regression models, such as clustering analyses or survival 

analysis, then it would require considerable methodological advancements to integrate the 

respective models with IRT models. Clustering, for example, would add a layer of mixture 

components on top of the already complex MGTT model. Model convergence may be at risk 

unless the sample size is adequately large. Otherwise, alternative methods that handle 

measurement errors may be adopted, such as Wang et al. (2019) for regression models and Su et 

al. (2018) for clustering analysis.  

Limitations and Future Research 
 
 A few limitations of the current study need to be emphasized. First, like in many 

simulation studies, we are limited in terms of the range of conditions, models, and assumptions 

we may use to evaluate and compare the methods. For instance, we did not use a fully crossed 

person design by crossing the magnitude of impact with the magnitude of correlations between 

repeated measures. Although from the current simulation results, we can infer that correlation 

contributes the most to the performance difference of the three methods, a fully crossed design 
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may have gotten the message across more straightforwardly. Further, although simulation study 

II and III provide further empirical evidence to support the uses of MGTT beyond just two 

cohorts and two time points, they are by no means comprehensive. If researchers decide to use 

MGTT on their real data, it may be advisable to conduct a simulation study that mimics their real 

data design just to gauge the discrepancies that could result when using different approaches.  

Second, we assume the multivariate normality assumption holds, which could certainly 

be violated in practice. While past studies have shown that modest departure from multivariate 

normality do not deteriorate the results too much (e.g., Flora & Curran, 2004; Wang et al., 2019), 

to our knowledge, none of the studies have focused on individual latent change scores. Hence, 

this will be worth exploring in the future as change scores are affected by latent trait estimates 

from both time points in a compound fashion, and larger bias may result.  

Third, in our real data example, although we evaluated model fit via WLS, we did not 

conduct a formal check on longitudinal measurement invariance (Widaman et al., 2010). The 

guiding philosophy of our real data analysis protocol is not to attempt to unearth the singular 

correct data-generating model, but rather to fit a model that produces the most stable and reliable 

inferences. While modern technology allows detailed features of single item response functions 

to be inspected, this should not lead to over-reporting of small details. At the minute level, all 

models are somewhat incorrect. Hence, the main question should be whether a model 

discrepancy seriously influences major conclusions. That said, a formal longitudinal invariance 

check may be needed if many items exhibit extremely small PPP-values. We are comforted here 

that our PPP findings were not very small.  Further, in our analyses, we collapsed item response 

categories if the number of counts of endorsements is below 20. This cutoff was handpicked 

based on prior studies (e.g., Crane et al., 2012, 2021), whereas more systematic checks could be 
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applied in the future. In fact, some of our items in ADNI have up to 10 response categories, and 

in theory, treating those responses as continuous should work too, though that also makes linear 

assumptions on the relationship between item responses and the latent ability level which may 

not be correct. We treated these multi response category items as categorical so that the model 

retained flexibility to address this possible non-linearity.  

 Fourth, in our modeling approach, the latent change score is obtained by subtracting the 

latent trait estimates from two time points. In contrast, we can use an alternative parameterization 

first laid out in Embretson (1991) and McArdle (2009), wherein the latent trait from each 

subsequent occasion, 𝜃𝜃𝑖𝑖𝑖𝑖, for person 𝑖𝑖 at time 𝑡𝑡, is represented by 𝜃𝜃𝑖𝑖1 + 𝜁𝜁𝑖𝑖𝑖𝑖 , (𝑡𝑡 ≥ 2). Here 𝜁𝜁𝑖𝑖𝑖𝑖 is a 

latent change score that can be directly output from model estimation. Although this 

parametrization would be basically the same as our models in Equation 1 or 4, the advantage is 

one can directly regress 𝜁𝜁𝑖𝑖𝑖𝑖 on external predictors such as treatment vs. placebo group. This way, 

the coefficient of the group variable has a clear meaning: how much the treatment changes the 

outcome of interest from time 1 to time t relative to the placebo group, which is essentially the 

same as the widely used difference-in-difference estimator.  

 Lastly, we used Bayesian MCMC for model estimation throughout the paper. However, 

as explained in earlier sections, the MGTT model can very well be estimated using EM 

algorithm with analytic dimension reduction. Because the general-purpose software such as 

Mplus does not exploit dimension reduction for MGTT, future research would be to create 

customized R function or package that will implement this dimension reduction enabled EM 

algorithm. Moreover, the new function/package could have built-in flexibility to let users specify 

priors whenever needed, so that the multi-stage estimation approach can also be conducted in an 

EM framework.  
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Practical Implications 

For the multi-cohort longitudinal design, we recommend using the MGTT model that not 

only takes advantage of integrated data from heterogeneous cohorts, but also handles nested data 

structure adequately. When a high correlation between main factors over time is anticipated, 

such as when the time gap between adjacent measurement waves is short, the MGTT model 

would produce much more precise latent trait and change score estimates. Given the MGTT 

model complexity and inherent missing data nature of pooling data from multiple studies (or 

cohorts), the Bayesian estimation approach is recommended. When there are not too many 

nuisance factors (i.e., the number of items administered repeatedly is small), a concurrent 

calibration is recommended, otherwise a multi-stage estimation is preferred. To implement 

Bayesian MCMC, researchers can use the non-informative priors as described in this paper 

(except the informative priors used in multi-stage estimation to transfer information between 

stages) and closely monitor chain convergence using the Gelman-Rubin statistic. If concurrent 

calibration fails to converge, the multi-stage estimation is a viable alternative, although its 

implementation may take a little more effort especially when there are more than two cohorts. 

Researchers need to ensure the transfer of information between stages is correct, and there are no 

viable shortcuts to careful and laborious attention to detail. 
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Figure 1 
An illustration of MGTT model for the ADNI-Executive Functioning (EF) scale  
Group 1 

 
 
 
Group 2 
 

 
 

Note. Notation wise, the superscript denotes time point (1 or 2), and subscripts denote factors and 
groups. That is, 𝜃𝜃11

1   and 𝜃𝜃11
2  denote the main factor (i.e., EF) for group 1 at time 1 (baseline) and 
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time 2 (6-month follow-up) respectively, whereas 𝜃𝜃12
1   and 𝜃𝜃12

2  denote the main factor for group 
2 at both time points. Similarly, 𝜃𝜃21

1   and 𝜃𝜃21
2  denote the nuisance factor (i.e., clock method) for 

group 1 at time 1 (baseline) and time 2 (6-month follow-up) respectively. The second subscript is 
used to denote group membership (1 or 2). For instance, µ01

2  and µ11
2  denote the mean of EF and 

clock method factors in group 1 at time 2, whereas µ02
1  and µ12

1  denote the mean of EF and clock 
method factors in group 2 at time 1. As shown, the means and variances of EF and clock method 
factors at time 1 group 1 are fixed at 0 and 1 respectively, whereas their means and variances in 
all remaining time points and groups are freely estimated. The covariances among the same 
factor over time are freely estimated and differ per group. Similarly, the variances of the other 
nuisance factors (i.e.,   η’s) are freely estimated per group.  
 
 
Figure 2 
An illustration of the multi-stage estimation approach with a three-cohort design 
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Figure 3 
Discrimination and threshold parameter estimates of 7 common items (see Table 8) from ADNI 
language domain in stage I and stage II 
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Table 1  
True item parameters for simulation studies 

Cohort 1 Cohort 2 Cohort 3 Item a b 𝛾𝛾 
Baseline  Follow I Follow II Baseline  Follow I Follow II Baseline  Follow I 
Item Design I 

√ √  √ √  √ √ 1 0.912 -2.469 -0.876 1.760 0.955 
√ √  √ √  √ √ 2 1.019 -2.256 -0.588 2.555 0.905 
√ √  √ √  √ √ 3 1.219 -1.854 -0.647 2.869 1.199 
√  √ √  √ √  4 1.555 -1.184  0.374 1.424 (0.703) 
√  √ √  √ √  5 0.849 -2.597 -0.232 2.303 (1.116) 
√  √ √  √ √  6 1.545 -1.203  0.540 1.251 (1.131) 

 √   √   √ 7 1.592 -1.111 -0.005 1.534  
 √   √   √ 8 1.308 -1.678  0.435 1.772  
 √   √   √ 9 1.276 -1.742  0.984 1.027  
  √   √   10 0.709 -2.876 -0.576 1.372  
  √   √   11 0.853 -2.588  0.303 2.655  
  √   √   12 0.824 -2.647 -0.749 2.337  
Item Design II 

√ √  √ √    1 0.912 -2.469 -0.876 1.760 0.955 
√ √  √ √    2 1.019 -2.256 -0.588 2.555 0.905 
√ √  √ √    3 1.219 -1.854 -0.647 2.869 1.199 
√ √     √ √ 4 1.555 -1.184  0.374 1.424 0.703 
√ √     √ √ 5 0.849 -2.597 -0.232 2.303 1.116 
√ √     √ √ 6 1.545 -1.203  0.540 1.251 1.131 

   √ √  √ √ 7 1.592 -1.111 -0.005 1.534 1.459 
   √ √  √ √ 8 1.308 -1.678  0.435 1.772 1.017 
   √ √  √ √ 9 1.276 -1.742  0.984 1.027 1.194 

Note. Simulation study I used cohort I and cohort II baseline and follow up I data, for both item design I and design II. Note that under item design 
I, only the first nine items were relevant. The three γ parameters in the parenthesis were not used.  Simulation study II used cohort I, II, and III 
baseline and follow up I data, for both item design I and design II. Again, under item design I, only the first nine items were relevant. The three γ 
parameters in the parenthesis were not used. Simulation study III used cohort I and cohort II baseline, follow up I and II data, for only item design 
I. All 12 items were used and all six γ parameters were used. 
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Table 2 
True generating person parameters for the simulation study I 
  

Person 
Design 

Cohort I Cohort II Remarks 

I 𝜃𝜃~𝑚𝑚𝑣𝑣𝑚𝑚([0, 0.2]′, 𝚺𝚺), where 𝚺𝚺 = [1, 0.4; 0.4,1] 
(Kuhfeld & Soland, 2022) 

𝜃𝜃~𝑚𝑚𝑣𝑣𝑚𝑚([0.1, 0.3]′, 𝚺𝚺), where 
𝚺𝚺 = [1, 0.4; 0.4,1] 

Moderate correlation between baseline and 
follow up traits, small mean change of θ (0.2) 
over time, and little impact between two 
cohorts (mean difference =0.1, no difference 
of 𝚺𝚺 ) 

II 𝜃𝜃~𝑚𝑚𝑣𝑣𝑚𝑚([0, 0.05]′, 𝚺𝚺), where 𝚺𝚺 =
[1, 1.04; 1.04,1.37] (again following ADNI language 
data analysis results) 

𝜃𝜃~𝑚𝑚𝑣𝑣𝑚𝑚([0.5, 0.55]′, 𝚺𝚺), 
where 𝚺𝚺 =
[1.12, 1.15; 1.15,1.3] 

High correlation between baseline and follow 
up traits, small mean change of θ (0.05) over 
time, and moderate impact between two 
cohorts (mean difference =0.5, a little 
difference of 𝚺𝚺) 

III 𝜃𝜃1~𝑁𝑁(0,1) 𝜃𝜃2 = 𝜃𝜃1 − 0.75 + 𝑣𝑣 for the first 20% 
sample, 𝜃𝜃2 = 𝜃𝜃1 + 0.75 + 𝑣𝑣 for the last 
20% sample, and 𝜃𝜃2 = 𝜃𝜃1 + 𝑣𝑣 for the 
middle 60% sample, where 𝑣𝑣~𝑈𝑈(−0.2,0.2) 

𝜃𝜃1~𝑁𝑁(0.1,1) Same as 
design III & 
IV 

High correlation between baseline and follow 
up traits, low impact. 

IV 𝜃𝜃1~𝑁𝑁(0,1) 𝜃𝜃1~𝑁𝑁(0.5, 1) High correlation between baseline and follow 
up traits, moderate impact. 

 

 
Table 3 
Latent trait and latent change score recovery for item design I in simulation study I 
 
Person Design   Baseline Follow up Change 

  Single Concurrent 3-stage Single Concurrent 3-stage Single Concurrent 3-stage 
I Cohort 1 Bias 0.015 0.001 -0.010 -0.016 -0.019 -0.031 -0.031 -0.020 -0.021 
  RMSE 0.435 0.424 0.425 0.430 0.421 0.423 0.562 0.544 0.544 
  Mean ABS 0.344 0.336 0.337 0.340 0.333 0.334 0.447 0.433 0.433 
  Mean SE 0.414 0.413 0.405 0.406 0.414 0.390 0.582 0.586 0.564 
 Cohort 2 Bias 0.006 0.006 -0.009 -0.021 -0.020 -0.048 -0.027 -0.027 -0.039 
  RMSE 0.438 0.430 0.431 0.431 0.422 0.425 0.566 0.548 0.550 
  Mean ABS 0.345 0.339 0.340 0.341 0.334 0.336 0.449 0.435 0.437 
  Mean SE 0.412 0.413 0.406 0.403 0.418 0.395 0.578 0.589 0.568 
II Cohort 1 Bias 0.008 -0.006 -0.012 -0.022 -0.035 -0.036 -0.030 -0.03 -0.023 
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  RMSE 0.435 0.380 0.380 0.456 0.420 0.415 0.548 0.407 0.404 
  Mean ABS 0.343 0.299 0.299 0.359 0.331 0.326 0.435 0.324 0.321 
  Mean SE 0.416 0.369 0.361 0.432 0.420 0.386 0.602 0.560 0.529 
 Cohort 2 Bias 0.008 0.009 -0.015 -0.014 -0.012 -0.047 -0.006 -0.021 -0.032 
  RMSE 0.453 0.380 0.378 0.464 0.402 0.400 0.464 0.306 0.307 
  Mean ABS 0.356 0.299 0.297 0.364 0.317 0.314 0.429 0.244 0.244 
  Mean SE 0.429 0.374 0.360 0.434 0.399 0.375 0.611 0.547 0.521 
III Cohort 1 Bias -0.001 -0.009 -0.029 -0.029 0.006 -0.050 -0.028 0.015 -0.023 
  RMSE 0.435 0.383 0.384 0.450 0.405 0.410 0.544 0.404 0.406 
  Mean ABS 0.344 0.303 0.304 0.355 0.321 0.325 0.433 0.326 0.329 
  Mean SE 0.415 0.368 0.364 0.428 0.397 0.382 0.598 0.542 0.528 
 Cohort 2 Bias -0.016 -0.016 -0.032 -0.021 0.009 -0.063 -0.005 0.025 -0.031 
  RMSE 0.438 0.386 0.388 0.450 0.410 0.414 0.536 0.406 0.406 
  Mean ABS 0.346 0.305 0.307 0.355 0.324 0.328 0.426 0.327 0.327 
  Mean SE 0.414 0.365 0.369 0.427 0.396 0.388 0.596 0.539 0.536 
IV Cohort 1 Bias 0.007 0.007 -0.018 -0.020 0.027 -0.040 -0.027 0.020 -0.022 
  RMSE 0.435 0.383 0.384 0.450 0.409 0.409 0.545 0.408 0.409 
  Mean ABS 0.344 0.303 0.303 0.354 0.324 0.324 0.434 0.328 0.330 
  Mean SE 0.413 0.368 0.363 0.426 0.398 0.381 0.596 0.543 0.527 
 Cohort 2 Bias -0.003 0.005 -0.024 -0.012 0.036 -0.055 -0.009 0.031 -0.031 
  RMSE 0.441 0.389 0.391 0.463 0.421 0.421 0.543 0.411 0.411 
  Mean ABS 0.348 0.307 0.308 0.365 0.332 0.332 0.432 0.332 0.332 
  Mean SE 0.420 0.372 0.371 0.433 0.403 0.394 0.605 0.550 0.542 

 
 
Table 4 
Latent trait and latent change recovery for item design II in simulation study I 
 
Person  
Design 

 Cohort I Cohort II 
 Baseline Follow up Change Baseline Follow up Change 

  Single 3-stage Single 3-stage Single 3-stage Single 3-stage Single 3-stage Single 3-stage 
I Bias -0.001 -0.006 0.012 -0.001 0.012 0.004 -0.002 -0.030 -0.019 -0.040 -0.016 -0.010 
 RMSE 0.493 0.490 0.499 0.496 0.565 0.558 0.522 0.522 0.522 0.522 0.570 0.565 
 Mean ABS 0.392 0.389 0.396 0.393 0.448 0.442 0.416 0.415 0.417 0.416 0.453 0.448 
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 Mean SE 0.483 0.480 0.476 0.477 0.680 0.678 0.506 0.479 0.504 0.485 0.716 0.682 
II Bias -0.005 -0.008 0.010 0.001 0.014 0.009 -0.004 -0.029 -0.018 -0.031 -0.014 -0.002 
 RMSE 0.492 0.451 0.526 0.499 0.525 0.406 0.538 0.482 0.550 0.510 0.519 0.306 
 Mean ABS 0.391 0.360 0.417 0.396 0.417 0.323 0.427 0.384 0.438 0.406 0.412 0.244 
 Mean SE 0.483 0.447 0.499 0.504 0.696 0.674 0.523 0.461 0.531 0.494 0.747 0.676 
III Bias -0.006 -0.013 0.000 -0.021 0.006 -0.008 -0.008 -0.026 -0.013 -0.021 -0.005 0.005 
 RMSE 0.495 0.456 0.522 0.494 0.520 0.407 0.523 0.489 0.546 0.525 0.514 0.410 
 Mean ABS 0.393 0.362 0.413 0.393 0.414 0.328 0.417 0.390 0.436 0.420 0.409 0.331 
 Mean SE 0.484 0.450 0.497 0.491 0.696 0.667 0.503 0.455 0.521 0.496 0.725 0.674 
IV Bias -0.010 -0.009 0.009 -0.010 0.020 -0.000 0.005 -0.032 -0.006 -0.030 -0.010 0.002 
 RMSE 0.493 0.454 0.518 0.492 0.522 0.407 0.523 0.488 0.550 0.526 0.526 0.410 
 Mean ABS 0.391 0.361 0.412 0.392 0.415 0.328 0.416 0.389 0.437 0.419 0.418 0.332 
 Mean SE 0.485 0.451 0.496 0.496 0.695 0.671 0.518 0.460 0.534 0.502 0.745 0.684 

 
Table 5 
Latent trait and latent change recovery for item design I in simulation study II 
 
Person  
Design 

  Baseline Follow up Change 
  Single Concurrent Multi-stage Single Concurrent Multi-stage Single Concurrent Multi-stage 

I Cohort 1 Bias 0.008 0.037 -0.011 -0.014 0.016 -0.031 -0.023 -0.020 -0.020 
  RMSE 0.436 0.428 0.426 0.433 0.422 0.425 0.565 0.547 0.548 
  Mean ABS 0.342 0.337 0.336 0.343 0.334 0.336 0.449 0.434 0.435 
  Mean SE 0.416 0.407 0.409 0.411 0.402 0.396 0.587 0.574 0.571 
 Cohort 2 Bias 0.005 0.041 -0.016 -0.006 0.019 -0.032 -0.012 -0.022 -0.016 
  RMSE 0.438 0.431 0.431 0.434 0.424 0.427 0.561 0.548 0.550 
  Mean ABS 0.345 0.340 0.339 0.343 0.335 0.337 0.445 0.436 0.437 
  Mean SE 0.415 0.405 0.405 0.41 0.405 0.396 0.585 0.574 0.568 
 Cohort 3 Bias 0.004 0.043 -0.011 -0.010 0.019 -0.048 -0.014 -0.024 -0.036 
  RMSE 0.453 0.429 0.427 0.434 0.422 0.426 0.464 0.306 0.307 
  Mean ABS 0.344 0.339 0.337 0.342 0.333 0.336 0.559 0.547 0.549 
  Mean SE 0.416 0.403 0.41 0.411 0.404 0.397 0.586 0.573 0.572 
II Cohort 1 Bias 0.011 0.040 -0.016 -0.027 0.022 -0.042 -0.038 -0.018 -0.026 
  RMSE 0.433 0.379 0.377 0.456 0.421 0.414 0.545 0.408 0.401 
  Mean ABS 0.341 0.299 0.298 0.359 0.332 0.327 0.433 0.324 0.318 
  Mean SE 0.415 0.37 0.365 0.432 0.425 0.393 0.602 0.565 0.537 
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 Cohort 2 Bias -0.001 0.067 -0.024 -0.030 0.053 -0.052 -0.029 -0.014 -0.028 
  RMSE 0.457 0.388 0.380 0.467 0.414 0.405 0.542 0.311 0.306 
  Mean ABS 0.359 0.305 0.298 0.366 0.325 0.317 0.431 0.248 0.244 
  Mean SE 0.427 0.379 0.355 0.435 0.41 0.374 0.611 0.559 0.517 
 Cohort 3 Bias 0.001 0.059 -0.014 -0.021 0.049 -0.056 -0.022 -0.011 -0.041 
  RMSE 0.440 0.360 0.354 0.455 0.398 0.394 0.526 0.272 0.271 
  Mean ABS 0.348 0.285 0.279 0.357 0.314 0.310 0.418 0.217 0.216 
  Mean SE 0.414 0.357 0.343 0.427 0.399 0.371 0.596 0.535 0.506 

 
 
 
 
Table 6 
Latent trait and latent change recovery for item design II in simulation study II 
 
Person  
Design 

  Cohort I   Cohort II   Cohort III   
  Bias RMSE Mean 

ABS 
Mean 
SE 

Bias RMSE Mean 
ABS 

Mean 
SE 

Bias RMSE Mean 
ABS 

Mean 
SE 

I Baseline Single 0.001 0.496 0.395 0.481 -
0.008 

0.520 0.414 0.509 -
0.016 

0.473 0.375 0.451 

 M-S 0.002 0.492 0.392 0.472 -
0.019 

0.516 0.410 0.497 -
0.027 

0.470 0.371 0.431 

 Follow 
up 

Single 0.003 0.499 0.396 0.473 -
0.024 

0.525 0.418 0.508 -
0.018 

0.479 0.379 0.451 

 M-S 0.000 0.496 0.394 0.474 -
0.025 

0.521 0.415 0.501 -
0.031 

0.475 0.375 0.435 

II Baseline Single -
0.004 

0.495 0.393 0.483 -
0.007 

0.539 0.428 0.528 -
0.012 

0.473 0.375 0.454 

 M-S 0.001 0.453 0.360 0.446 0.002 0.485 0.385 0.495 -
0.011 

0.415 0.328 0.405 

 Follow 
up 

Single 0.005 0.524 0.415 0.499 -
0.023 

0.553 0.440 0.534 -
0.014 

0.504 0.397 0.476 

 M-S 0.008 0.501 0.397 0.503 0.000 0.514 0.409 0.523 -
0.009 

0.462 0.364 0.448 

Note. Here “M-S” denotes multi-stage estimation. 
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Table 7 
Latent trait and latent change recovery for simulation study III 
 
Person  
design 

  Baseline Follow up 1 Follow up 2 
concurrent three-stage single concurrent three-stage single concurrent three-stage single 

I Cohort 1 Bias 0.033 -0.003 0.004 0.039 -0.004 -0.011 0.042 -0.011 -0.008 
 RMSE 0.471 0.469 0.488 0.417 0.415 0.426 0.484 0.482 0.498 
 Mean ABS 0.373 0.372 0.388 0.331 0.330 0.338 0.385 0.383 0.395 
 Mean SE 0.459 0.453 0.474 0.392 0.387 0.404 0.471 0.458 0.481 
   Baseline – Follow up 1 Follow up 1– Follow up 2 Baseline – Follow up 2 
   concurrent three-stage single concurrent three-stage single concurrent three-stage single 
  Bias 0.005 -0.001 -0.016 0.003 -0.007 0.003 0.009 -0.009 -0.013 
  RMSE 0.564 0.564 0.588 0.598 0.599 0.619 0.585 0.585 0.605 
  Mean ABS 0.449 0.450 0.468 0.475 0.476 0.492 0.465 0.465 0.482 
  Mean SE 0.605 0.597 0.625 0.614 0.601 0.629 0.659 0.645 0.677 
 Cohort 2  Baseline Follow up 1 Follow up 2 
   concurrent three-stage single concurrent three-stage single concurrent three-stage single 
  Bias 0.044 0.008 -0.005 0.036 -0.005 -0.004 0.039 -0.013 -0.008 
  RMSE 0.477 0.476 0.494 0.416 0.414 0.424 0.486 0.486 0.500 
  Mean ABS 0.379 0.378 0.393 0.330 0.328 0.336 0.387 0.387 0.398 
  Mean SE 0.461 0.442 0.474 0.393 0.389 0.399 0.473 0.45 0.475 
   Baseline – Follow up 1 Follow up 1– Follow up 2 Baseline – Follow up 2 
   concurrent three-stage single concurrent three-stage single concurrent three-stage single 
  Bias 0.044 0.008 -0.005 0.036 -0.005 -0.004 0.039 -0.013 -0.008 
  RMSE 0.477 0.476 0.494 0.416 0.414 0.424 0.486 0.486 0.500 
  Mean ABS 0.379 0.378 0.393 0.330 0.328 0.336 0.387 0.387 0.398 
  Mean SE 0.461 0.442 0.474 0.393 0.389 0.399 0.473 0.45 0.475 
II Cohort 1  Baseline   Follow up 1   Follow up 2   
   concurrent three-stage single concurrent three-stage single concurrent three-stage single 
  Bias 0.034 -0.002 0.006 0.042 -0.005 -0.010 0.052 -0.006 -0.011 
  RMSE 0.415 0.412 0.488 0.381 0.374 0.425 0.421 0.414 0.492 
  Mean ABS 0.331 0.328 0.388 0.302 0.297 0.336 0.335 0.329 0.391 
  Mean SE 0.407 0.403 0.474 0.376 0.357 0.407 0.426 0.401 0.479 
   Baseline – Follow up 1 Follow up 1– Follow up 2 Baseline – Follow up 2 
   concurrent three-stage single concurrent three-stage single concurrent three-stage single 
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  Bias 0.008 -0.003 -0.016 0.009 -0.001 0.000 0.018 -0.004 -0.017 
  RMSE 0.425 0.424 0.552 0.439 0.438 0.580 0.431 0.430 0.550 
  Mean ABS 0.339 0.338 0.440 0.350 0.349 0.461 0.344 0.342 0.437 
  Mean SE 0.555 0.539 0.627 0.569 0.538 0.63 0.59 0.57 0.676 
 Cohort 2  Baseline Follow up 1 Follow up 2 
   concurrent three-stage single concurrent three-stage single concurrent three-stage single 
  Bias 0.066 0.004 -0.010 0.061 0.006 -0.009 0.056 -0.001 -0.006 
  RMSE 0.427 0.419 0.499 0.387 0.378 0.428 0.423 0.418 0.499 
  Mean ABS 0.340 0.333 0.395 0.307 0.299 0.338 0.338 0.333 0.396 
  Mean SE 0.425 0.402 0.479 0.379 0.367 0.406 0.426 0.394 0.473 
   Baseline – Follow up 1 Follow up 1– Follow up 2 Baseline – Follow up 2 
   concurrent three-stage single concurrent three-stage single concurrent three-stage single 
  Bias -0.004 0.002 0.001 -0.005 -0.007 0.003 -0.010 -0.005 0.004 
  RMSE 0.428 0.428 0.555 0.442 0.442 0.584 0.435 0.433 0.556 
  Mean ABS 0.340 0.341 0.441 0.352 0.352 0.464 0.347 0.346 0.442 
  Mean SE 0.57 0.545 0.629 0.572 0.539 0.624 0.603 0.564 0.674 

 

Table 8 
Cognitive battery design for ADNI 1 and ADNI 2/GO 
 
Domain Item ADNI 1 ADNI 2/GO 
Language Neuropsychological Battery Category Fluency-Animal ✓  ✓  
 Category Fluency-Vegetable ✓   
 Boston Naming (Total) ✓  ✓  
 MMSE MMSE Repeating a sentence ✓  ✓  
 MMSE Following a Series of Instructions (hand) ✓  ✓  
 ADAS-Cognitive Behavior ADAS-Cog Following Commands ✓  ✓  
 ADAS-Cog Object Naming ✓  ✓  
 ADAS-Cog Ideational Practice ✓  ✓  
 MoCA Animal Naming –Rhino  ✓  
 Sentence Repetition Task 1  ✓  
 Sentence Repetition Task 2  ✓  
 Letter F Fluency  ✓  
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EF Neuropsychological Battery Clock copy – Circle ✓  ✓  
 Clock copy – Symmetry ✓  ✓  
 Clock copy – Numbers ✓  ✓  
 Clock copy – Hands ✓  ✓  
 Clock copy – Time ✓  ✓  
 WAIS-R Digit Symbol ✓   
 Digit Span Backwards ✓   
 Trails A ✓  ✓  
 Trails B ✓  ✓  

Note: The same set of items are used in both baseline and follow up in the respective cohorts. 

Table 9 
Absolute and comparative model fit results from WLS and MCMC 
 
Domain Data Model (GRM) Absolute fit indices for 

WLS 
Chi-Square Test for Difference 
Testing 

% of PPP-
value<0.05 

CFI TLI RMSEA Value Degrees of 
Freedom 

P-
value 

Item level 

Language ADNI 1 Without correlated 
residuals 

0.954 0.960 0.081 544.406 8 0.000 0.0625 

With correlated 
residuals 

0.991 0.992 0.037 0 

ADNI 2 
/GO 

Without correlated 
residuals 

0.884 0.891 0.077 931.981 11 0.000 0 

With correlated 
residuals 

0.977 0.977 0.035 0 

Executive 
Function  

ADNI 1 Without correlated 
residuals 

0.965 0.970 0.076 675.120 9 0.000 0 

With correlated 
residuals 

0.995 0.996 0.029 0 

ADNI 2 
/GO 

Without correlated 
residuals 

0.981 0.983 0.046 127.623 7 0.000 0 

With correlated 
residuals 

0.997 0.997 0.020 0 
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Table 10 
Descriptive statistics of counts of participants in each category of change from both domains and two methods 
 
 Language  Executive functioning  
Cluster Single 3-stage Single  Concurrent 
1 (A lot better) 55 (7%) 81 (11%) 68 (9%) 73 (10%) 
2 (A little better) 204 (27%) 221 (29%) 216 (28%) 181 (24%) 
3 (No change) 226 (30%) 245 (32%) 237 (31%) 240 (31%) 
4 (A little worse) 198 (26%) 148 (19%) 193 (25%) 188 (25%) 
5 (A lot worse) 81 (11%) 69 (9%) 50 (7%) 82 (11%) 

 
 
Table 11 
Hazard ratio, its confidence interval and p-value from Cox PH model 
 
  Single 3-stage/concurrent 
 Cluster HR 95% CI p-value HR 95% CI p-value 
Language 1 (A lot better) 0.55 [0.31, 0.97] 0.037 0.5 [0.30, 0.83] 0.007 
 2 (A little better) 0.63 [0.45, 0.87] 0.005 0.79 [0.58, 1.09] 0.2 
 4 (A little worse) 1.14 [0.85, 1.53] 0.4 1.98 [1.47, 2.67] <0.001 
 5 (A lot worse) 1.20 [0.81, 1.77] 0.4 1.95 [1.29, 2.93] 0.001 
EF 1 (A lot better) 0.58 [0.36, 0.92] 0.022 0.51 [0.30, 0.84] 0.008 
 2 (A little better) 0.71 [0.53, 0.96] 0.027 0.46 [0.32, 0.66] <0.001 
 4 (A little worse) 1.00 [0.75, 1.35] >0.9 1.58 [1.18, 2.10] 0.002 
 5 (A lot worse) 0.95 [0.58, 1.55] 0.8 2.42 [1.68, 3.48] <0.001 

Note. HR denotes hazard ratio. 
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Table 12 
Sensitivity analyses: Hazard ratio, its confidence interval and p-value from Cox PH model 
 
  Single (frequencies match  

Bayesian categories) 
3-stage/concurrent (frequencies  
match traditional categories) 

 Cluster HR 95% CI p-value HR 95% CI p-value 
Language 1 (A lot better) 0.49 [0.30, 0.80] 0.004 0.67 [0.37, 1.22] 0.2 
 2 (A little better) 0.65 [0.48, 0.88] 0.006 0.93 [0.66, 1.31] 0.7 
 4 (A little worse) 1.10 [0.81, 1.50] 0.5 2.27 [1.68, 3.07] <0.001 
 5 (A lot worse) 1.23 [0.82, 1.84] 0.3 2.34 [1.58, 3.48] 0.001 
EF 1 (A lot better) 0.56 [0.35, 0.88] 0.013 0.45 [0.27, 0.77] 0.003 
 2 (A little better) 0.68 [0.50, 0.93] 0.017 0.48 [0.34, 0.67] <0.001 
 4 (A little worse) 0.89 [0.66, 1.20] 0.4 1.62 [1.22, 2.14] <0.001 
 5 (A lot worse) 0.92 [0.61, 1.37] 0.7 2.52 [1.61, 3.93] <0.001 
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