Using Bayesian IRT for Multi-Cohort Repeated Measure Design to Estimate Individual Latent Change Scores

Supplemntal Material

Table A1.
ADNI-Language items and their recoded values

	Recoded Language Score	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Raw scores	Category Fluency-Animal	$0-8$	$9-11$	$12-$	$15-$	$18-$	$21-$	$24-$	$28-$
				14	17	20	23	27	41
	Category Fluency-Vegetable	$0-5$	$6-8$	$9-10$	$11-$	$13-$	$15-$	$17-$	$20-$
					12	14	16	19	31
	Boston Naming (Total)	$0-$	$15-$	$18-$	$21-$	$23-$	$25-$	$27-$	$29-$
	14	17	20	22	24	26	28	30	
	ADAS-Cog Following	$1-5$	0						
	Commands								
	ADAS-Cog Object Naming	$2-5$	1	0					
	ADAS-Cog Ideational	$1-5$	0						
	Practice						$12-$	$18-$	$21-$
	Letter F Fluency	$0-5$	$6-8$	$9-11$	$12-$	$15-$	18		
					14	17	20	34	

Table A2.
ADNI-EF items and their recoding

Original Language Score	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
WAIS-R Digit Symbol	$0-9$	$10-$	$16-$	$20-$	$30-$	$39-46$	$47-53$	$54-56$	$57-61$	$62-87$
		15	19	29	38					
Digit Span Backwards	$1-2$	3	4	5	6	7	8	9	10	$11-12$
Trails A	$118-$	$94-$	$73-$	$53-$	$40-$	$32-39$	$27-31$	$24-26$	$21-23$	$3-20$
	150	117	93	72	52					
Trails B	$261-$	$226-$	$196-$	$137-$	$96-$	$73-95$	$60-72$	$54-59$	$49-53$	$5-48$
	300	260	225	195	136					

Mplus Code

Code for ADNI-EF

TITLE: ADNI EF concurrent calibration
DATA: FILE = "EFADNI12.lgrm.cor.concurrent.dat";
VARIABLE: NAMES = rid y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 Phase; MISSING=.;
CATEGORICAL ARE y1-y18;
IDVARIABLE = rid;
CLASSES=c(2);
KNOWNCLASS=c(Phase=1-2);
ANALYSIS:
TYPE=MIXTURE;
ESTIMATOR = BAYES;
CHAINS $=1$;
FBITER = 200000;
POINT=MEAN;
MODEL:

```
%OVERALL%
th1_1 by y1-y9* (1_1-1_9);
th1_2 by y10-y18* (1_1-1_9);
th1_3 by y5@1 y6@1 y7@1 y8@1 y9@1;
th1_4 by y14@1 y15@1 y16@1 y17@1 y18@1;
th2_1 by y1@1 y10@1;
th2_2 by y2@1 y11@1;
th2_3 by y3@1 y12@1;
th2_4 by y4@1 y13@1;
th2_5 by y5@1 y14@1;
th2_6 by y6@1 y15@1;
th2_7 by y7@1 y16@1;
th2_8 by y8@1 y17@1;
th2_9 by y9@1 y18@1;
[y1$1 y10$1] (t1);
[y1$2 y10$2] (t2);
[y1$3 y10$3] (t3);
[y1$4 y10$4] (t4);
[y1$5 y10$5] (t5);
[y1$6 y10$6] (t6);
[y1$7 y10$7] (t7);
[y1$8 y10$8] (t8);
[y1$9 y10$9] (t9);
[y2$1 y11$1](t10);
[y2$2 y11$2](t11);
[y2$3 y11$3](t12);
[y2$4 y11$4](t13);
[y2$5 y11$5](t14);
[y2$6 y11$6] (t15);
[y2$7 y11$7](t16);
```

```
[y2$8 y11$8](t17);
[y2$9 y11$9] (t18);
[y3$1 y12$1](t19);
[y3$2 y12$2] (t20);
[y3$3 y12$3] (t21);
[y3$4 y12$4] (t22);
[y3$5 y12$5] (t23);
[y3$6 y12$6] (t24);
[y3$7 y12$7](t25);
[y3$8 y12$8] (t26);
[y3$9 y12$9] (t27);
[y4$1 y13$1] (t28);
[y4$2 y13$2] (t29);
[y4$3 y13$3] (t30);
[y4$4 y13$4] (t31);
[y4$5 y13$5] (t32);
[y4$6 y13$6] (t33);
[y4$7 y13$7] (t34);
[y4$8 y13$8] (t35);
[y4$9 y13$9] (t36);
[y5$1 y14$1](t37);
[y6$1 y15$1] (t38);
[y7$1 y16$1](t39);
[y8$1 y17$1](t40);
[y9$1 y18$1](t41);
th1_1 WITH th1_3-th1_4@0;
th1_2 WITH th1_3-th1_4@0;
th1_1 WITH th2_1-th2_9@0;
th1_2 WITH th2_1-th2_9@0;
th1_3 WITH th2_1-th2_9@0;
th1_4 WITH th2_1-th2_9@0;
th2_1 WITH th2_2-th2_9@0;
th2_2 WITH th2_3-th2_9@0;
th2_3 WITH th2_4-th2_9@0;
th2_4 WITH th2_5-th2_9@0;
th2_5 WITH th2_6-th2_9@0;
th2_6 WITH th2_7-th2_9@0;
th2_7 WITH th2_8-th2_9@0;
th2_8 WITH th2_9@0;
%c#1%
    [th1_1@0];
th1_1@1;
[th1_2*0];
th1_2*1;
[th1_3@0];
th1_3*1;
[th1_4@0];
th1_4*1;
```

```
[th2_1-th2_9@0];
th2_1-th2_9*1;
th1_1 WITH th1_2;
th1_3 WITH th1_4;
%c#2%
    [th1_1*0];
th1_1*1;
[th1_2*0];
th1_2*1;
[th1_3@0];
th1_3*1;
[th1_4@0];
th1_4*1;
[th2_1-th2_9@0];
th2_1-th2_9*1;
th1_1 WITH th1_2;
th1_3 WITH th1_4;
```

OUTPUT:
TECH1, TECH2, TECH8, TECH10;STANDARDIZED;
SAVEDATA:
FILE is EFADNI12traitconcurrent.txt;
SAVE is fscores (100);
PLOT:
TYPE=PLOT3

Stage II code for ADNI-language

TITLE: ADNI Language Stage II Estimation
DATA: FILE = "mplus.ADNI2.mcmc.lgrm210119NI.dat";
VARIABLE: NAMES = rid y1 y2 y3 y4 y5 y6 y 7 y 8 y 9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20
y21 y22;
MISSING=.;
CATEGORICAL ARE y1-y22;
IDVARIABLE = rid;
ANALYSIS:
TYPE=GENERAL;
ESTIMATOR = BAYES;
CHAINS=1;
FBITER = 100000;
POINT=MEAN;
MODEL:
th1_1 by y1-y11* (1_1-1_11);
th1_2 by y12-y22* (1_1-1_11);
th2_1 by y1* y12 (n1);
th2_2 by y2* y12 (n2);
th2_3 by y3* y14 (n3);
th2_4 by y4* y15 (n4);
th2_5 by y5* y16(n5);
th2_6 by y6* y17 (n6);

```
th2_7 by y7* y18(n7);
th2_8 by y8* y19 (n8);
th2_9 by y9* y20 (n9);
th2_10 by y10* y21 (n10);
th2_11 by y11* y22 (n11);
[th1_1*0];
th1_1*1;
[th1_2*0];
th1_2*1.1;
[th2_1-th2_11@0];
th2_1-th2_11@1;
[y1$1 y12$1](t3);
[y1$2 y12$2] (t4);
[y1$3 y12$3] (t5);
[y1$4 y12$4] (t6);
[y1$5 y12$5] (t7);
[y1$6 y12$6] (t8);
[y1$7 y12$7] (t9);
[y2$1 y13$1] (t10);
[y2$2 y13$2] (t11);
[y2$3 y13$3] (t12);
[y2$4 y13$4] (t13);
[y2$5 y13$5] (t14);
[y2$6 y13$6] (t15);
[y2$7 y13$7] (t16);
[y3$1 y14$1] (t17);
[y4$1 y15$1](t18);
[y5$1 y16$1] (t19);
[y6$1 y17$1] (t20);
[y6$2 y17$2] (t21);
[y7$1 y18$1] (t31)
[y8$1 y19$1] (t22);
[y9$1 y20$1] (t23);
[y10$1 y21$1] (t24);
[y11$1 y22$1] (t25);
[y11$2 y22$2] (t26);
[y11$3 y22$3] (t27);
[y11$4 y22$4] (t28);
[y11$5 y22$5] (t29);
[y11$6 y22$6] (t30);
th1_1 WITH th1_2;
th1_1 WITH th2_1-th2_11@0;
th1_2 WITH th2_1-th2_11@0;
th2_1 WITH th2_2-th2_11@0;
th2_2 WITH th2_3-th2_11@0;
th2_3 WITH th2_4-th2_11@0;
th2_4 WITH th2_5-th2_11@0;
th2_5 WITH th2_6-th2_11@0;
th2_6 WITH th2_7-th2_11@0;
th2_7 WITH th2_8-th2_11@0;
th2_8 WITH th2_9-th2_11@0;
```

th2_9 WITH th2_10-th2_11@0;
th2_10 WITH th 2 _11@ $\overline{0}$;
MODEL PRIOR:
1_1~N(1.576,0.011449);
1_2~N(2.232,0.034596);
1_3~N(0.444,0.006724);
1_4~N(0.174,0.002704);
1_5~N(0.5,0.004225);
$1 _6 \sim \mathrm{~N}(1.346,0.0169)$;
1_7~N(0.81,0.011025);
n1~N(-0.844,0.005776);
n2~N(1.981,0.015129);
n3~N(1.185,0.021316);
n4~N(0.016,0.188356);
n5~N(0.744,0.0144);
n6~N(1.146,0.017161);
n7~N(1.124,0.022801);
t3~N(-2.920,0.013689);
t4~N(-1.669,0.007569);
t5~N(-0.478,0.005776);
t6 $\sim \mathrm{N}(0.586,0.006084)$;
t7~N(1.653,0.008836);
t8~N(2.66,0.014161);
t9~N(3.97,0.030276);
t10~N(-6.07,0.077284);
t11~N(-4.865,0.050625);
t12~N(-3.664,0.0324);
$\mathrm{t} 13 \sim \mathrm{~N}(-2.635,0.021904)$;
$\mathrm{t} 14 \sim \mathrm{~N}(-1.528,0.015876)$;
$\mathrm{t} 15 \sim \mathrm{~N}(-0.268,0.014161)$;
t16~N(1.602,0.020164);
t17~N(-1.562,0.016641);
t18~N(-1.463,0.01);
t19~N(-1.248,0.007744);
t20~N(-3.997,0.066564);
$\mathrm{t} 21 \sim \mathrm{~N}(-1.564,0.015876)$;
$\mathrm{t} 31 \sim \mathrm{~N}(-1.836,0.023716)$;

OUTPUT:
TECH1, TECH2, TECH8, TECH10;STANDARDIZED;
SAVEDATA:
FILE is traitlong2mcmc200119NI.txt;
SAVE is fscores (100);
PLOT:
TYPE=PLOT3

