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ABSTRACT 1 

In this study, we explicitly modeled how the public’s perceived automated vehicle (AV) safety and their 2 
psychological attachment to cars affect mode choices involving privately owned self-driving cars and 3 
driverless ride-hailing services. We adopted psychometric questions developed by Ge et al. (1) to capture 4 
these two latent variables and designed a stated preference survey based on the participants’ actual travel 5 
patterns. Then, we incorporated latent variables in a mode choice model and quantified their impact on 6 
mode choices using an integrated choice and latent variable model (ICLV). We found that both latent 7 
variables have a statistically significant effect on mode choices. The results show that car dependency has 8 
the most potent effect on privately owned cars (e.g., regular car and self-driving car), followed by 9 
driverless ride-hailing and regular ride-hailing. We also found that changes in safety perception have a 10 
sizeable monetary equivalent. We further investigated the impact of improvements in safety perception 11 
through four scenarios. The scenario testing results show that as the distribution of perceived safety is 12 
compressed toward positive safety perception, the market share of AVs spikes and dominates regular cars. 13 
Our results demonstrate that based on the current public’s understanding of AVs, even if AV prices are 14 
comparable to regular cars, we cannot expect widespread use of AVs. However, improvements in AVs’ 15 
safety and, consequently, consumer safety perception can considerably expand AVs’ market share, and it 16 
may offset the high cost of using the technology. 17 

Keywords: Self-driving car, integrated choice and latent variable, mode choice, perceived safety, car 18 
dependency  19 
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INTRODUCTION 1 

Over the past decade, the potential benefits of automated vehicles (AVs) and services have been explored 2 
by many researchers (For example, Fagnant and Kockelman, (2); Wadud et al., (3); Litman, (4)). These 3 
benefits include but are not limited to, reducing human error-induced crashes, improving congestion, 4 
enabling persons with reduced mobility (e.g., elderly, disabled), lowering energy consumption, and 5 
reducing carbon emissions. Despite potential long term merits of AVs, studies have identified several 6 
barriers for the public’s acceptance and adoption of AVs. Safety of AVs is one of the main obstacles that 7 
frequently comes up in the literature. Even though AVs are expected to be safer than cars driven by 8 
humans, current assessments of people’s willingness to use AVs or to ride in driverless ride-hailing 9 
services are affected by people’s lack of trust in AV technology and a recognition that the technology is 10 
not yet ready for the market. For example, an international survey of 1,722 residents of six countries 11 
found that the majority of respondents are highly concerned about “equipment or system failure” and 12 
“self-driving cars not performing as well as human drivers” (5). Another paper studying public 13 
acceptance of AVs found that out of 467 study participants, 82% ranked “personal safety and the safety of 14 
those around you while operating an autonomous car” as the most critical topic affecting their adoption of 15 
AVs (6). Xu et al. (7) found that perceived safety of AVs can predict intentions to use and willingness to 16 
ride in an AV, while Nazari et al. (8) and Mushtaq et al. (9) confirmed that safety concerns adversely 17 
impact public acceptance of shared and regular self-driving cars.  18 

Additionally, despite similarities in the in-vehicle experience of AV mobility services (e.g., driverless 19 
ride-hailing) and privately owned AVs, studies show that the public perceives them differently, and 20 
willingness to use them varies among different groups of individuals. For example, an online survey of 21 
556 residents of Austin metropolitan showed that most of the respondents prefer to own an AV rather 22 
than use AV services such as driverless ride-hailing (10). Another study has identified that younger, more 23 
educated, technology savvy and urban residents are more likely to use AV mobility services than older 24 
individuals and residents of suburbs and rural areas (11). Krueger et al. (12) surveyed 435 residents of 25 
Australia’s metropolitan areas and found that people who use multiple modes in their daily lives are more 26 
likely to use AV services. Very few studies have explored the underlying reasons for these differences. 27 
One study found that individuals who express greater concern for the environment are more likely to use 28 
shared autonomous vehicle services (13).  29 

In this study, we hypothesized that willingness to use mobility services is likely affected by psychological 30 
attachment to car ownership. We explicitly model how safety perception and car dependency affect mode 31 
choices involving AVs and driverless ride-hailing services using an integrated choice and latent variable 32 
model (ICLV). We incorporated these two constructs as latent variables into a mode choice model. 33 

In the past few years, more studies have investigated latent variables, such as people’s perceptions and 34 
attitudes toward AVs and services, to better understand AV adoption motivations and barriers. For 35 
example, Haboucha et al. (13) explored the motivations of travelers to adopt AVs and modeled mode 36 
choices between regular cars, privately owned AVs, and shared AVs. They identified five latent variables 37 
using identifier questions from prior literature and found three of them statistically significant in the mode 38 
choice model: 1) Pro-AV attitudes, 2) enjoyment of driving, and 3) concern for the environment. As 39 
expected, their results show that people who enjoy driving are more likely to use a regular car than an 40 
AV, and individuals with pro-AV attitudes are more inclined toward AVs. Concern for the environment 41 
was a more robust predictor for shared modes. Lavieri and Bhat (14) explored which individuals are 42 



4 
 

willing to share an AV with strangers in the future using a multivariate integrated choice and latent 1 
variable approach. Their model included three latent variables: privacy-sensitivity, time-sensitivity, and 2 
interest in the productive use of travel time. They concluded that individuals who are more interested in 3 
using travel time productively are more likely to choose ride-hailing services. They also found that 4 
travelers dislike shared ride delays more than the presence of strangers. Wicki et al. (15) investigated the 5 
willingness to pay and use self-driving bus services. They incorporated technology-related attitudes to 6 
explore the tradeoffs between “technological skepticism” and the potential benefits of the service. They 7 
found that the technology acceptance latent variable is a strong predictor of self-driving bus usage. 8 
Rahimi et al. (16) analyzed people’s attitudes toward shared mobility options and autonomous vehicles 9 
using a structural equations model. They identified eleven latent variables and explored latent variables 10 
relationship with socioeconomic characteristics and correlations between the attitudes. 11 

Ge et al. (1) reviewed the transportation literature and concluded that processes of selecting questions to 12 
measure psychological constructs are inconsistently applied, and in many cases, questions are somewhat 13 
arbitrarily defined. Therefore, they conducted an extensive literature review to identify the critical 14 
psychometric measures influencing mode choices and specifically, adoption and use of autonomous 15 
vehicles. They considered three psychological concepts (norms, perceptions, and attitudes) and nine 16 
qualitative utility constructs that shape individuals’ travel behavior to develop a comprehensive list of 17 
latent variables. They performed a factor analysis on a nationwide sample to obtain a minimum set of 18 
latent variables and questions to measure them. The factor analysis results identified nine latent variables 19 
and 44 questions.  20 

In this study, we adopted questions identified by Ge et al. (1) for the safety of AVs and car dependency 21 
latent variables. Then we investigated and quantified the impact of psychological constructs on mode 22 
choices, specifically choices involving privately-owned AVs and driverless ride-hailing services. To 23 
improve behavioral realism, we designed a novel stated preference choice experiment based on each 24 
user’s revealed preference data (17). We asked respondents to choose from a choice set that included both 25 
traditional modes (e.g., car, bike, transit, and walking) and unconventional modes (e.g., ride-hailing, 26 
privately owned self-driving car, driverless ride-hailing service) since such a mixed choice set is more 27 
likely in the next few decades (4). An ICLV model was built using Biogeme software (18) to analyze the 28 
data. In the following paragraphs, we further discuss ICLV models and relevant transportation literature 29 
using these models. 30 

Traditional discrete choice models treat the decision-makers as an “optimizing black box” and have 31 
focused on observable variables such as attributes of alternatives, socio-economic characteristics of 32 
decision-makers, market information, and past experiences as inputs that can determine choice (19). 33 
However, findings from studies in the social sciences have shown that latent constructs such as attitudes, 34 
norms, and perceptions can override the influence of observable variables of disaggregate behavior (20, 35 
21, 22, 23). Figure 1 illustrates the decision-making process. Terms in rectangles can be observed or 36 
measured by proper experiments. Terms in ovals are unobservable latent variables. Perceptions, 37 
generalized attitudes, preferences, decision protocols, and behavioral intentions are essential constructs in 38 
the modeling of cognitive decision process (19). Although these latent constructs cannot be measured 39 
directly, latent variable modeling techniques hypothesize that their effects on measurable variables can be 40 
observed and measured (24). 41 
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 1 

Figure 1 Path diagram for the customer decision process (McFadden, 1986) 2 

ICLV models are an extension of traditional discrete choice models that fall under the broader umbrella of 3 

hybrid choice models (HCMs). ICLV models explicitly incorporate psychological factors such as 4 

attitudes and perceptions into choice model, and model the cognitive processes underlying the formation 5 

of a choice (20, 24). ICLV models include a choice model formulation that contains unobserved 6 

psychometric measures (e.g., attitudes and perceptions) incorporated through latent variables, along with 7 

observed variables. Perception variables capture how decisionmakers perceive attributes of different 8 

alternatives. Attitudes reflect decisionmakers’ tastes, needs, goals, and capabilities that have been shaped 9 

over time and are impacted by both experience and factors such as their socioeconomic characteristics 10 

(25).  11 

Bolduc and Daziano (25) described the estimation techniques and implementation of ICLV models using 12 
empirical data. They showed that estimating ICLV models using simulated maximum likelihood can be 13 
successfully implemented. They concluded that the ICLV model provides an “unbiased, consistent, and 14 
smooth estimator of the true probabilities.” Their case study showed that the ICLV model could be 15 
adopted for practical situations and improve understanding of consumer profiles and new technology 16 
adoption. 17 
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Vij and Walker (20) evaluated the ICLV modeling framework's statistical properties and compared them 1 
to a reduced form choice model without latent variables. They found that ICLV models do not offer 2 
improvements in terms of goodness-of-fit and the consistency of parameter estimated over the reduced 3 
form choice models. However, ICLV models allow identification of structural relationships between 4 
observable variables that could not be identified using choice models without latent variables. They also 5 
found ICLV models are potentially more efficient in estimating parameters than reduced form choice 6 
models without latent variables. 7 

Applications of ICLV models in transportation and specifically mode choice studies have been growing 8 
over the past two decades. For example, Morikawa et al. (26) included comfort and convenience latent 9 
variables in their study of mode choice. They found integrating latent variables improves goodness-of-fit, 10 
and both latent variables are significantly positive. Johansson et al. (27) included latent variables for 11 
attitudes towards flexibility and comfort, and for being pro-environment, in their mode choice model. 12 
They found that both influence mode choice decisions. They concluded that in addition to economic 13 
incentives, there are other ways to attract individuals to different modes of transportation. Ding et al. (28) 14 
compared the ICLV model with the traditional model and explored the influence of attitudes toward 15 
active modes on mode choices. They found that the ICLV model outperforms traditional models in terms 16 
of fit and explanatory power, and attitudes toward active modes play an essential role in the nonmotorized 17 
mode choice. Bouscasse (29) has conducted an extensive literature review of ICLV models' applications 18 
in mode choice modeling. They concluded that even though forecasting is difficult when using ICLV 19 
models, ICLV models are useful for informing policy development and recommendations.  20 

In the following sections, we first discuss the collected data and characteristics of our sample. Then we 21 
talk about the applied methods and results. The paper concludes with a discussion of the results and 22 
suggestions for future work. 23 

DATA 24 

We designed a survey that consisted of four sections: 1) socio-economic questions, 2) trip diary, 3) choice 25 
experiments, and 4) psychometric measures. Section one included questions about the respondents' socio-26 
economic characteristics, and their household. In section two, the respondents filled out a trip diary for each 27 
trip that they made during their typical or most recent working day, including the approximate origin and 28 
destination addresses and the purpose of the trip. Approximate addresses were used in real-time to retrieve 29 
travel time, wait time, and cost data the Google Distance Matrix and Uber APIs. In section three, API data 30 
was used as base values to generate personalized choice scenarios for the respondents. Section four included 31 
the psychometric questions prioritized by Ge et al. (1). 32 

For the attributes that were not collected through APIs, we assumed the following base values: 33 

- Transit waiting time of 10 minutes; Transit wait time is derived based on average weighted transit 34 
wait times in 2017 National Household Travel Survey, which is 9.6 minutes (30).  35 
 36 

- Parking fee of $2.00 per hour; Auchincloss et al. (31) used 2009 survey of public parking agencies 37 
and found that on average, on-street meters charges $1 per hour. Considering this value in 2009, 38 
we decided to use $2.00 per hour for our survey.  39 

 40 
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- Monthly car payment of $500 (for self-driving cars; and regular cars when individual does not own 1 
a car). Experian data from first quarter of 2019 (32) shows an average monthly payment of $554 2 
for new cars.  3 

 4 

We collected travel time for all the modes (driving, ride-hailing, transit, walking and biking) and travel 5 
cost for transit from the Google Distance Matrix API; and collected wait time and travel cost for ride-6 
hailing trips from the Uber API. Since for ride-hailing option there is no intermediate stops we assumed 7 
ride-hailing in-vehicle travel time is the same as the driving time collected from the Google API. 8 

To identify the sensitivity of respondents’ choices to different attributes, we multiplied the base values of 9 
attributes by multipliers shown in Table 1. The set of multipliers used in any choice situation was 10 
determined by an experimental design. The product of the base value and the multiplier was then included 11 
in the choice scenarios. More details about experimental design can be found in Jabbari et al. (17). 12 

TABLE 1 Experimental attribute levels 13 

Attribute Levels 

Transit Travel Cost  - 0.6 0.8 1 1.2 1.4 

Ride-hailing Travel Cost  0.2 0.6 0.8 1 1.2 1.4 

Parking fee - 0 0.6 1 1.4 - 

Travel time 0.6 0.8 0 1.2 1.4 - 

Wait time - - 0.6 1 1.4 - 

Monthly payment - 0.6 0.8 1 1.2 1.4 

 14 

In section three, respondents faced six personalized choice scenarios based on the trip diary and API data. 15 
Respondents were asked to make travel-related decisions (e.g. purchase a self-driving car, purchase/sell a 16 
car, choose a mode) for a hypothetical individual who was very similar to them in terms of age, gender, 17 
and vehicle ownership. This approach is inspired by Le Vine et al. (33). Polman (34) found that 18 
individuals are more inclined to justify choices made on behalf of others than the ones they made for 19 
themselves. Each person participated in six choice experiments, and out of those, the first two were 20 
simpler and were used to familiarize them with the format, and the last four were used for modeling. The 21 
choice set included seven modes: regular car, self-driving car, ride-hailing, driverless ride-hailing, transit, 22 
bike, and walk. More details about the survey are presented in Jabbari et al. (17). 23 

The survey was programmed and hosted online, and Amazon’s Mechanical Turk (MTurk), a 24 
crowdsourcing marketplace platform, was used to recruit survey participants. 1000 respondents were 25 
recruited in the U.S. To check the quality of responses, we repeated two of the psychometric questions 26 
and reversed the order of the Likert scale choices. Responses meeting any of the following criteria were 27 
flagged and responses with two or more flags were omitted from the sample. 28 

 Responses to the repeated psychometric questions that differed by more than one point on the six-29 
point Likert scale. 30 
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 Number of children they entered exceeded the number of household members.  1 
 Purchase year of their car was more than one year before the model year of the car. 2 

Individuals who did not provide their approximate address or entered an address that did not exist (and as 3 
a result API data for them were not accurate), were removed from the sample. We also removed 4 
individuals whose trips were too long (driving time more than 2.5 hours) or too short (driving time less 5 
than 5 minutes) to be of interest in this work. After cleaning the data, 757 respondents (out of 1000) were 6 
approved, and their corresponding data were used for analysis. 7 

89% of our sample indicated that they are full time employees. The sample’s household income 8 
distribution is shown in Figure 2. Both mean and median income fall into the $40,000-$59,999 category. 9 
In 2018, median household income for the United States was $61,937 (35).  10 

 11 

Figure 2 Sample’s household income  12 

Our sample consists of 46% females, 53% males, and 1% who chose other. Compared to the U.S. 13 
population (51% females, 49% males (36)), our sample represents more men. Figure 3 shows the 14 
educational attainment of the sampled individuals which is skewed toward higher education than the U.S. 15 
population (37). 16 
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 1 

Figure 3 Sample’s educational attainment  2 

Figure 4 shows the age distribution of our sample. The mean and median age are 33 and 35 years old, 3 
respectively. The median age of individuals 18 and older in the U.S. is in the 45-49 years old range (38). 4 
Our sample is biased toward younger individuals compared to the national population 5 
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 1 

Figure 4 Sample age distribution 2 

METHODS 3 

Figure 5 depicts the ICLV framework we adopted for this study. There are two main components: (1) a 4 
discrete choice sub-model and (2) a latent variable sub-model. Each of the sub-models includes a 5 
structural and a measurement component (20). Under the random utility maximization (RUM) 6 
framework, the standard choice model is a latent variable model itself. Utility is a latent construct that 7 
measures an individual’s satisfaction conditional on attributes of each alternative. Structural equations 8 
describe the latent variables in terms of observable exogenous variables, and measurement equations link 9 
latent variables to indicators. For the latent variable sub-model, indicators can be responses to 10 
psychometric questions. For the choice model, the indicator is the decision maker’s choice (whether 11 
revealed or stated) (20, 25). 12 
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 1 

Figure 5 The ICLV framework (adopted from Vij and Walker (20)) 2 

We adopted Vij and Walker’s (20) ICLV model representation as follows: 3 

 4 

Structural equations 5 

 6 

𝑈𝑖 = 𝛽𝑥𝑖 +  𝛤𝑥𝑖
∗ +  𝜀𝑖      (1) 7 

 8 
𝑥𝑖

∗ = 𝐴𝑥𝑖 +  𝜐𝑖      (2) 9 

 10 

Measurement equations 11 

 12 
𝐼𝑖 = 𝐷𝑥𝑖

∗ +   𝜁
𝑖
      (3) 13 

 14 

𝑦
𝑖

=  ቊ
1 𝑖𝑓 𝑢𝑖𝑗  ≥  𝑢

𝑖𝑗′  𝑓𝑜𝑟 𝑗′ ∈  {1, … , 𝐽}

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (4) 15 

 16 

Where 𝑈௜  is the (𝐽 × 1) vector of utilities of each of the J alternatives for the decision-maker i, 𝑥௜ is the 17 

(𝐾 × 1) vector of observable explanatory variables and 𝑥௜
∗is the (𝑀 × 1) vector of latent variables, 𝛽 and 18 

Γ are the (𝐽 × 𝐾) and (𝐽 × 𝑀) matrices of unknown model parameters corresponding to observable and 19 

latent variables, respectively. 𝜀௜ is the (𝐽 × 1) vector indicate the error terms associated to utilities; A is 20 

the (𝑀 × 𝐾) matrix of parameters that indicate the structural relationship between the latent and 21 

observable variables. 𝜐௜ is the (𝑀 × 1) vector of stochastic component of that relationship. 𝐼௜ corresponds 22 

to a (𝑅 × 1) vector of indicators used to measure the latent variables for the decision-maker i. D is the 23 

(𝑅 × 𝑀) matrix of unknown parameters that indicate the relationship between indicators and latent 24 

variables, and 𝜁௜ is a (𝑅 × 1) vector of measurement equations error terms; 𝑦௜௝  is the choice indicator 25 

𝜐௜ 𝜂௜  β Г 

Observable Variables 
(𝑥 ) 

A 

Utility (𝑈௜) 

Choice (𝑦௜) 

Latent Variables (𝑥௜
∗) Indicators (𝐼௜) 

D 

Latent Variable 
Sub-Model 

Discrete Choice Sub-Model 

𝜀௜  
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(20). More details on theoretical concepts can be found in Vij and Walker (20) and Bolduc and Daziano 1 

(25). 2 

RESULTS 3 

We conducted a confirmatory factor analysis and confirmed the relationship between indicator questions 4 

and latent variables developed by Ge et al. (1) in our data. In our model each individual can have up to 5 

four choice scenarios and we captured the repeated observation nature of the data through random effects. 6 

For each individual, we considered their first trip of the day mode choice for modeling. 7 

 8 

We found the safety of AVs and car dependency variables were statistically significant and they improved 9 

the explanatory power of the model. Safety of AVs was included in self-driving car and driverless ride-10 

hailing modes. For car dependency, we estimated three coefficients: one for privately-owned options, one 11 

for driverless ide-hailing, and another one for regular ride-hailing option. 12 

 13 

To estimate the random effects, we used 2500 Halton draws taken from a normal distribution. 14 

 15 

The utility equations for self-driving car and driverless ride-hailing alternatives are given by: 16 

 17 

𝑈𝑆𝑒𝑙𝑓−𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑐𝑎𝑟,𝑖 =  𝑉𝑆𝑒𝑙𝑓−𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑐𝑎𝑟,𝑖 + 𝛤𝑆𝑃𝑆𝑃𝑖 + 𝛤𝐶𝐷,𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑐𝑎𝑟𝐶𝐷𝑖 +  𝜀𝑆𝑒𝑙𝑓−𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑐𝑎𝑟,𝑖    (5) 18 

𝑈𝐷𝑟𝑖𝑣𝑒𝑟𝑙𝑒𝑠𝑠 𝑟𝑖𝑑𝑒ℎ𝑎𝑖𝑙𝑖𝑛𝑔,𝑖 =  𝑉𝐷𝑟𝑖𝑣𝑒𝑟𝑙𝑒𝑠𝑠 𝑟𝑖𝑑𝑒ℎ𝑎𝑖𝑙𝑖𝑛𝑔,𝑖 + 𝛤𝑆𝑃𝑆𝑃𝑖 + 𝛤𝐶𝐷,𝐷𝑟𝑖𝑣𝑒𝑟𝑙𝑒𝑠𝑠 𝑟𝑖𝑑𝑒ℎ𝑎𝑖𝑙𝑖𝑛𝑔𝐶𝐷𝑖 +  𝜀𝐷𝑟𝑖𝑣𝑒𝑟𝑙𝑒𝑠𝑠 𝑟𝑖𝑑𝑒ℎ𝑎𝑖𝑙𝑖𝑛𝑔,𝑖  (6) 19 

 20 

Vji = βXji is the deterministic part of the utility function for alternative j and decision-maker i. SPi is the 21 

safety perception of individual i; CDi is the car dependency of individual i. 𝛤𝑆𝑃 is estimated coefficient for 22 

safety perception; 𝛤𝐶𝐷,𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑐𝑎𝑟 is estimated coefficient for car dependency for privately owned vehicles 23 

(e.g., regular car, and self-driving car); 𝛤𝐶𝐷,driverless ride−hailing is estimated coefficient for car dependency for 24 

driverless ride-hailing alternative. Results corresponding to different parts of the model are presented in 25 

Table 2, 3, and 4. 26 

 27 

TABLE 2 ICLV model results  28 

Variable Estimate Std error t-test p-value 

Car     

Monthly Payment/Monthly Income  -3.08 0.41 -7.56 0.00 

Parking fee/Daily Income -6.60 2.84 -2.32 0.02 

Travel Time (hr)                            
mean -2.00 0.32 -6.29 0.00 

std. dev. 2.27 0.42 -5.41 0.00 

ASC  0.98 0.27 3.63 0.00 

Car dependency (CD)  1.22 0.14 8.53 0.00 

Self-driving car     

Monthly Payment/Monthly Income  -3.08 0.41 -7.56 0.00 
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Parking fee/Daily Income -6.60 2.84 -2.32 0.02 

Travel Time (hr)                            
mean -2.35 0.43 -5.49 0.00 

std. dev. 3.21 0.52 -6.22 0.00 

ASC   0.16 0.28 0.55 0.58 

Safety of AVs (SP)  0.46 0.04 12.30 0.00 

Car dependency (CD)  1.22 0.14 8.53 0.00 

Driverless Ride-hailing     

Cost/Daily Income -5.21 0.69 -7.60 0.00 

Wait Time (hr)             0.01 0.02 0.86 0.39 

Travel Time (hr)                           
mean -1.55 0.53 -2.95 0.00 

std. dev. 0.17 0.53 0.37 0.75 

ASC   -0.83 0.30 -2.79 0.00 

Safety of AVs (SP)  0.46 0.04 12.30 0.00 

Car dependency (CD)  0.81 0.17 4.68 0.00 

Ride-hailing     

Cost/Daily Income -5.21 0.69 -7.60 0.00 

Wait Time (hr)             0.01 0.02 0.86 0.39 

Travel Time (hr)                           
mean -4.42 0.89 -4.99 0.00 

std. dev. 2.44 0.68 3.60 0.00 

ASC              0.16 0.28 0.58 0.56 

Car dependency (CD)  0.57 0.17 3.34 0.00 

Transit     

Cost/Daily Income -5.21 0.69 -7.60 0.00 

Wait Time (hr)        0.03 0.02 1.21 0.22 

Travel Time (hr)                           
mean -2.97 0.55 -5.42 0.00 

std. dev. 1.92 0.35 5.46 0.00 

Bike     

Travel Time (hr)                           
mean -10.80 1.28 -8.41 0.00 

std. dev. -6.50 0.74 -8.82 0.00 

ASC      2.63 0.29 8.93 0.00 

Walk     

Travel Time (hr)               
mean -55.80 13.10 -4.26 0.00 

std. dev. 30.90 7.18 -4.31 0.00 

ASC                 5.08 0.59 8.58 0.00 

Initial log likelihood: -18684.46 
Final log likelihood: -13303.33 
Adjusted Rho-square:        0.285 
Akaike Information Criterion (AIC): 26708.66 
Bayesian Information Criterion (BIC): 26944.49 

 1 
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We assumed a linear structural regression equation for the chosen latent variable. We created two age 1 
categories: Millennials and Generation Z (18-38 years old) and older respondents (39 years old and 2 
older). We included two income categories: over sample median (over $60,000) and under sample median 3 
(below $60,000). Table 3 shows the estimated structural model. We found that income is not statistically 4 
significant for neither safety perception nor car dependency. Individuals older than 38 years old perceive 5 
self-driving cars as less safe than younger individuals, and they are more car dependent. Also, individuals 6 
who identify themselves as males perceive self-driving cars as safer and are less car-dependent than their 7 
female counterparts. 8 

 9 

TABLE 3 Structural model results 10 

Structural Model estimate Std err t-test p-value 

Safety Perception     

Age (Older than 38 years old) -0.68 0.15 -5.01 0.00 
Income (Over $60k) -0.12 0.13 -0.95 0.34 
Gender (Male) 0.84 0.13 6.47 0.00 
Intercept 0.33 0.11 2.97 0.00 
Error component 1.64 0.07 23.70 0.00 

Car Dependency     

Age (Older than 38 years old) 0.17 0.07 2.41 0.01 
Income (Over $60k) 0.09 0.07 1.32 0.19 
Gender (Male) -0.14 0.07 -2.16 0.03 
Intercept 1.01 0.07 14.20 0.00 
Error component 0.83 0.04 20.70 0.00 

 11 

The measurement model links the latent variable to indicators. For the case of multinomial ordered with L 12 

responses (such as 6-point Likert scale, L = 6) we get: 13 

   14 

𝐼௜
∗ = 𝐷𝑥௜

∗ +  𝜁௜          (7) 15 

 16 

 17 

𝐼௜ = ൞

1             𝑖𝑓 𝛾଴ < 𝐼௜
∗ < 𝛾ଵ

2             𝑖𝑓 𝛾ଵ < 𝐼௜
∗ < 𝛾ଶ

⋮
𝐿           𝑖𝑓 𝛾௅ିଵ < 𝐼௜

∗ < 𝛾௅

      (8) 18 

 19 

The first indicators' coefficient of both safety perception and car dependency were set to 1, and 20 

coefficients in other indicators are estimated relative to the first one. All the estimates have a positive 21 

value because higher-ranking responses correspond to a higher perception of self-driving car safety. Table 22 

4 shows these estimates. 23 

  24 
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TABLE 4 Measurement model results 1 

ID  Indicators Estimates 

Safety of AVS 

SP1 I am ______ self-driving vehicles can drive as well as human drivers in general. 
(1- Extremely doubtful, 2- Doubtful, 3- A little doubtful, 4- Sort of confident, 5- Confident, 6- Extremely confident) 

1.00 

SP2 Driverless cars generally will be ______compared with most drivers on the road.  
(1- Much more dangerous, 2- More dangerous, 3- Somewhat more dangerous, 4- A little safer, 5- Safer, 6- Much safer) 

1.04 

SP3 Widespread use of self-driving vehicles would result in ______crashes. 
(1- A lot more, 2- More, 3- Slightly more, 4- Slightly fewer, 5- Fewer, 6- A lot fewer) 

1.07 

SP4 Driverless cars generally will be ______than I am as a driver.  
(1- Much more dangerous, 2- More dangerous, 3- Somewhat more dangerous, 4- A little safer, 5- Safer, 6- Much safer) 

0.90 

SP5 I ______trust self-driving car technology to keep me safe when I am riding in one. 
(1- Definitely would not, 2- Probably would not, 3- Maybe would not, 4- Maybe would, 5- Probably would, 6- Definitely 
would) 

1.10 

 
Car dependency 

CD1 Owning a car is a(n) ______part of being an adult. 
(1- Not important at all, 2- Not important, 3- Not so important, 4- Somewhat important, 5- Very important, 6- Extremely 
important) 

1.00 

CD2 Owning a car I can use anytime is ______.  
(1- Not at all important, 2- Not important, 3- Not so important, 4- Somewhat important, 5- Very important, 6- Extremely 
important) 

1.83 

CD3 Driving my own car is ______ .  
(1- Not empowering at all, 2- Not empowering, 3- Not so empowering, 4- Somewhat empowering, 5- Very empowering, 6-
Extremely empowering) 

1.32 

CD4 The flexibility of driving by myself is ______. 
(1- Not at all important, 2- Not important, 3- Not so important, 4- Somewhat important, 5- Very important, 6- Extremely 
important) 

1.65 

CD5 The ability to make spontaneous stops when I drive my own car is ______ to me.  
(1- Not at all important, 2- Not important, 3- Not so important, 4- Somewhat important, 5- Very important, 6- Extremely 
important) 

1.40 

 2 

The results show that perception of AVs safety and car dependency both have a direct, positive and 3 

statistically significant impact on the utility of self-driving cars and driverless ride-hailing service. The 4 

estimated magnitude of car dependency coefficient for privately owned options (regular car and self-5 

driving car) is 1.6 times higher than driverless ride-hailing. This means that individuals who are more car 6 

dependent are more likely to choose privately owned car and self-driving car relative to driverless ride-7 

hailing, and driverless ride-hailing over other modes (e.g. regular ride-hailing, transit, bike, and walk). 8 

Even though the in-vehicle experience in the driverless ride-hailing service and self-driving car is likely 9 

to be similar, larger psychological dependency on cars favors privately owned vehicles more than any 10 

other mode. 11 

 12 

As individuals perceive AVs safer, they are more likely to choose them as their mode of transportation. 13 

We looked at the equivalent monetary weight of safety perception on the choice of self-driving cars and 14 

driverless ride-hailing services for an individual with a $60k income. A one unit improvement in the 15 

safety perception of self-driving cars or driverless ride-hailing, holding all else equal, increases the utility 16 

these modes by 0.46 units of utility. 17 

 18 

𝛥 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 =  𝛽ௌ௔௙௘௧௬ ௣௘௥௖௘௣௧௜௢௡ . 𝛥 𝑆𝑎𝑓𝑒𝑡𝑦 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛      (9) 19 



16 
 

 1 

Δ 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = 0.46 × 1  2 

 3 

For the case of privately-owned self-driving car, this is similar to the change in utility that would result 4 

from decreasing the monthly car payment by about $750: 5 

 6 

𝛥 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 =  𝛽 ಾ೚೙೟೓೗೤ ೛ೌ೤೘೐೙೟

ಾ೚೙೟೓೗೤ ೔೙೎೚೘೐

. 𝛥 
ெ௢௡௧௛௟௬ ௣௔௬௠௘௡௧

ெ௢௡௧௛௟௬ ௜௡௖௢௠௘
      (10) 7 

 8 

0.46 =  −3.08 .
୼ெ௢௡௧௛௟௬ ௣௔௬௠௘௡௧

଺଴,଴଴଴/ଵଶ
   Δ𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = −$746.75 9 

 10 

For driverless ride-hailing, a one unit improvement in safety perception provides the same utility benefit 11 

as decreasing cost of the trip by $14.53: 12 

 13 

𝛥 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 =  𝛽  ೃ೔೏೐ ೎೚ೞ೟

ವೌ೔೗೤ ೔೙೎೚೘೐

. 𝛥 
ோ௜ௗ௘ ௖௢௦௧

஽௔௜௟௬ ௜௡௖௢௠௘
       (11) 14 

 15 

0.46 =  −5.21 .
୼ோ௜ௗ௘ ௖௢௦௧

଺଴,଴଴଴/ଷ଺ହ
   Δ𝑅𝑖𝑑𝑒 𝑐𝑜𝑠𝑡 = −$14.51 16 

 17 

For both of the modes, the influence of a one unit change in safety perception is considerable. We 18 

explored four different scenarios, to demonstrate the potential impact of change in safety perception on 19 

the market share of driverless ride-hailing.  20 

 21 

For the base scenario, we used attributes’ base level and individuals’ collected API data. The base level 22 

for self-driving car monthly payment and individuals who did not own a car was $500 and for individuals 23 

who owned a car we used their reported monthly payment.  24 

 25 

For the first scenario, we decreased monthly cost of owning a self-driving car by 50% to $250. In the 26 

second scenario, we assumed that the cost of riding in a driverless ride-hailing service decreases by 75% 27 

due to eliminating labor costs. In the third scenario, we improved safety perception of some of the 28 

individuals by reducing the estimated safety perception distribution’s variance. We achieved this 29 

distribution by reducing the difference between each person's fitted safety perception and the highest 30 

fitted safety perception value by half. Figure 6 shows expected responses to attitudinal statements when 31 

safety perception improves under this scenario and compares them with actual responses. Under scenario 32 

3, everyone perceives AVs’ safety positively. 33 

 34 
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 1 

Figure 6 Expected responses after improved safety perception (scenario 3 and 4) vs observed 2 
responses 3 

In the fourth scenario, we explored how simultaneous decrease in driverless ride-hailing cost and better 4 

safety perception affects the market share. Table 5 shows the market share of each mode under different 5 

scenarios.   6 
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TABLE 5 Market share under different scenarios 1 

 Car Self-driving car Ride-hailing Driverless ride-hailing Transit Bike Walk 

Base Scenario 68.6% 15.4% 0.1% 0.7% 1.4% 11.0% 2.6% 

50% lower self-
driving car price 

65.1% 19.0% 0.1% 0.7% 1.4% 10.8% 2.6% 

75% lower ride-
hailing fares 

63.0% 11.5% 0.1% 12.1% 0.9% 9.6% 2.5% 

Improved Safety 
Perception 

32.5% 50.8% 0.0% 3.6% 0.8% 9.5% 2.6% 

Improved Safety 
Perception & 75% 
lower ride-hailing 
fares 

29.7% 49.7% 0.0% 8.3% 0.5% 9.0% 2.6% 

 2 

In scenario 1, market share of self-driving car increases by 3.6% due to halving the monthly payment 3 

while keeping the monthly payment for regular car the same as the base scenario. When cost of driverless 4 

ride-hailing drops to 25% of the current cost of ride-hailing services, driverless ride-hailing market share 5 

increases by 11.4%, mostly taking travelers from privately owned options. In scenario 3, when the 6 

perception of AVs safety improves, self-driving car dominates the market by taking approximately 50% 7 

of the market, and regular car’s market share drops to less than half of its base scenario share. This 8 

scenario highlights the magnitude of safety perception effect on the market share.  When safety 9 

perception improves, more people switch to AVs from their regular cars. In the last scenario, when we 10 

reduce driverless ride-hailing cost, self-driving car market share remains about the same relative to the 11 

third scenario, but market share of driverless ride-hailing doubles relative to the third scenario. In this 12 

scenario, driverless ride-hailing market share is still lower than the second scenario, even though both 13 

cost and safety perception have improved; This means that the overall utility of driverless ride-hailing 14 

does not overpass the utility of self-driving car. 15 

 16 

These scenarios demonstrate that under current conditions, even AV prices were lower, we would not 17 

expect self-driving cars to take over private car market. They highlight the role safety perception can play 18 

on the demand for private AVs. As AVs’ safety improve and consequently, the public’s perception of 19 

safety improves, consumers will associate higher utility to self-driving cars and driverless ride-hailing 20 

services. Personal AVs’ safety has the potential to compensate for their high costs. Consumers may be 21 

willing to pay more to use this technology if they perceive it as safe. For driverless ride-hailing, their 22 

mode share would grow if AVs allow a 75% reduction in fare, even if the safety perception remains the 23 

same as today. With safety perception improvements, more people would opt for privately owned self-24 

driving cars, resulting in smaller mode share for driverless ride-hailing services. 25 

CONCLUSION 26 

Despite many potential merits counted for AVs, studies have found several barriers to AV adoption. The 27 
one obstacle that stands out the most during our literature review was the perception of safety. We were 28 
also interested in understanding challenges for the adoption of driverless ride-hailing service. We 29 
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hypothesized that individuals who are psychologically attached to their car are more likely to avoid such a 1 
service.  2 

In this paper, we quantified the impact of two latent constructs, public’s safety perception and car 3 
dependency on choosing two AV options: 1) privately owned self-driving car and 2) driverless ride-4 
hailing service. We used an integrated choice and latent variable model to model mode choice and 5 
incorporated the two latent variables through sets of structural and measurement equations. 6 

We found that both safety perception and car dependency have a statistically significant effect on 7 
choosing AV modes. Our results show that car dependency has the most substantial impact on choosing 8 
privately owned cars, followed by driverless ride-hailing and regular ride-hailing. This finding confirms 9 
our initial hypothesis that the more psychologically attached individuals are to their vehicles, they are 10 
more likely to choose personal cars as their mode of transport. Interestingly, between the driverless ride-11 
hailing and regular ride-hailing, individuals who are more car dependent prefer the former over the latter.  12 

Another interesting finding of this analysis is the magnitude of safety perception effect on mode choice 13 
and how it compares with costs. We demonstrated how one unit change in safety perception means in 14 
terms of equivalent monetary impact. However, one unit of safety perception is not very intuitive. 15 
Therefore, we tested several scenarios to better grasp the effect of safety perception improvements. We 16 
determined a base scenario using API data collected for each individual’s trip and base values for other 17 
attributes. Then, we discovered that shifting people’s perceptions toward positive AV safety perception 18 
can drastically change AVs’ market share.  While keeping regular car monthly payments constant and 19 
reducing self-driving car payment, we observed that self-driving car market grew by 4.4%. However, 20 
when safety perception improved, its market share grew by about 35%, taking over 50% of the market. 21 
Based on our analysis, privately owned self-driving cars will dominate driverless ride-hailing services and 22 
reducing fare can help expand their market share. 23 

Under current conditions, we would not expect self-driving cars to take over private car market. Even if 24 
prices were much cheaper, the market would only grow slightly. However, improving safety perception 25 
would have a big impact on demand for private AVs. In contrast, the mode share of driverless ride-hailing 26 
would grow substantially if AVs permitted a 75% reduction in fares, even if safety perceptions did not 27 
change from today. And if safety perceptions did improve, the effect for driverless ride-hailing could be 28 
negative, as more people would opt for personal AVs. 29 

Moving forward, we think there is value in focusing on driverless ride-hailing and AV services in general 30 
and explore the potential latent constructs impacting their adoption. Also, it might be worthwhile to 31 
model self-driving car purchase decisions independently and investigate psychological constructs that 32 
influence purchase decisions.  33 
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