
Andrea Stocco

Explanatory
Computational
Models in
Cognitive
Neuroscience
JANUARY 24, 2023

Contents

Introduction 11

PA R T ~ART.1I ALGORITHMIC MODELS

Reinforcement Learning 25

Accumulator Models of Decision-Making 49

Models of Long-Term Memory 57

PA R T ~ART.2II NEURAL NETWORKS

Perceptrons and Feedforward Networks 73

Hebbian Learning and Autoassociators 95

Recurrent Neural Networks 103

Bibliography 105

List of Figures

1 A comparison of the knight’s “computations” (left) and two of its possible
“functions”: defending the center, at the beginning (center) and supporting
a check, in endgame (right). Although the functions might be different, the
computations remain the same, and in fact it is the piece’s computations (the
rules of movement) that explain its use in different phases of the game. 13

2 A possible application of Fitts’ law: Determining the time it takes to use a
mouse to move a cursor (black arrow) from its original position to a new area
(the grey circle) 15

3 Predictions of Fitts’ Law (red dashed line) against the experimental results
of Table 1 (blue dots). The values of features W and D have been combined
into a single value x, and the parameters a and b were fit with linear regres-
sion 16

4 Loss function for the Fitts model across different values of parameters a and
b, when compared against the data in Table 1. 17

5 Points of the parameter space explored by the Nelder-Mead algorithm 17

6 The RL loop 27
7 Data and model from On the left, trace of dopamine neuron firings (“raster-

plots”) recorded from a primate performing a simple cue-reward association
task. On the right, model predictions for values for the reward r at time t, the
state value V , and the reward prediction error δt . 30

8 Changes in the V -table as an imaginary agent learns in the primate cue-learning
task described in the paper by Schultz, Dayan, and Montague. 32

9 A simulated mouse in a 4-by-4 maze, with a reward (cheese) in position (3,3) 32
10 Representation of the Internal V -table of an agent exploring the maze of Fig-

ure 9. In each matrix, the color represents the intensity of the V value asso-
ciated to each cell. The colorbar on the right illustrates the mapping between
color and V value. 33

11 Q-Values in the lookup tables of an agent learning to navigate the maze of
Figure 9 36

12 Preferred navigation paths in the 4 by 4 maze after 1,000 learning trials with
Q-learning (left) or SARSA (right). 37

6

13 V -tables of an agent learning a non-Markov environment using the standard
TD-learning algorithm (left) or TD(λ) (right). The latter can successfully
recovery the long-distance dependency between the rewards in the “win” and
“loss” states and the earlier “A” and “B” states. 39

14 A 20-step random walk of a agent moving in the maze environment until it
finds the reward 40

15 Timecourse of the eligibility traces as the agent walks in the path of Figure
14 41

16 Q-table of a model-based agent implementing a one-step Q-planning algo-
rithm with n= 1,000 simulation steps. Before the first move, the agent has
precise knowledge of the exact value of each action in each state 45

17 A comparison of Dyna-Q and Q-learning as an agent learns to navigate the
maze of Figure 9 46

18 Results from Tolman’s original experiment demonstrating the existence of
“cognitive maps” 47

19 Ratcliff’s Drift Diffusion Model 51
20 Example stimuli from a motion coherence paradigm 51
21 Speed accuracy trade-off in DDMs. Left: A model with high decision thresh-

old will be most accurate but take a longer time to decide. Right: By low-
ering the decision threshold, responses can be made more quickly, but the
number of errors is going to increase 53

22 Compared to a canonical DDM with neural starting point (Left), a DDM with
an initial response bias z is more likely and faster at reaching the boundary
that is closer to the starting point Right 53

23 Brown and Heathcote’s Linear Ballistic Accumulator model 56

24 Visual illustration of the probabilities of two events, A and B, in the space
of possible events 57

25 Ebbinghaus’ classic results 59
26 Ebbginghaus’s results from his own memory experiments 60
27 The odds of retrieving a particular memory trace, created at time ti = 0, de-

cay over time according to a power function 61
28 (Top) The declining retrieval odds of three traces associated with the same

memory m and created at different times; (Bottom) The activation of m of
reflects the summed effects of their traces and their decline over time. 62

29 Effects of recency and frequency 63
30 Semantic network representation of the four ACT-R memories “The canary

is a yellow bird”, “The canary is a bird that sings”, “Taylor Swift is an artists
who sings”, and “The Sun is a yellow star”. Grey boxes represent basic con-
cepts (that is, terminal nodes), and white boxes represent the facts built upon
them 66

31 Typical design of a Fan Effect experiment 69

7

32 A network of McCullogh-Pitts neurons designed to simulated a two-argument
logical gate, such as AND or OR. The input units represent the truth values
of its arguments, while the output value represents the truth value of the cor-
responding function. 75

33 A single McCullogh and Pitts neuron can work as an AND or as an OR logic
gate by setting its threshold θ at different values. In both panels, the blue
line represents the sum of the two inputs (x1 and x2) minus the threshold; points
represent the four possible input configurations; red points represent input
configuration that trigger a response in the output neuron. 75

34 A network implementing the NOT gate with McCullogh-Pitts neurons 76
35 A network implementing the XOR gate with McCullogh-Pitts neurons 76
36 Error function for a simple perceptron computing the AND logical function 78
37 A perceptron learning the AND logical gate. 81
38 The learning path of Figure 37 overlaid over the error surface of Figure 36 81
39 Simple single-digit stimuli for a perceptron. 82
40 Architecture of a perceptron for recognizing the digits of Figure 39 82
41 Weights of the perceptron after training it to recognize each of the digits in

figure 39 83
42 A perceptron cannot solve the XOR problem 83
43 Two common non-linear activation functions, the logistic function (left) and

the hyperbolic tangent function (right) 84
44 Architecture of a feedforward neural network to solve the XOR problem 88
45 (Left) Decline in the network error over 5,000 training epochs; (Right) Re-

sponses of the XOR network trained with backpropagation 89
46 Responses of the three hidden neurons of the XOR network to the four pos-

sible logical inputs 90
47 Architecture of a convolutional layer 91
48 Architecture of a subsampling (or maxpooling) layer 91

49 Architecture of a recurrent neural network trained to solve the XOR prob-
lem with Contrastive Hebbian Learning 97

50 Training a recurrent network to solve the XOR problem with Contrastive Heb-
bian Learning. Left: Changes in the error value as learning progresses; Right:
Final performance on the XOR problem. 97

51 A comparison of backpropagation and CHL. The figure illustrates the energy
values (blue line) associated with different possible states of the network, in-
cluding a target (green) and the actual response (orange). CHL is the deriva-
tive of the difference in the the energy states, while backpropagation is the
derivative of the difference between target and actual responses 99

52 Examples of handwritten “3”s from the MNIST database 100
53 A network trained with Oja’s rule over a variety of hand-written digits (Fig-

ure 52 has learned their common features 100
54 An example of a Hopfield network, with N = 4 neurons fully interconnected

with each other. 101

8

55 When presented with a pattern of neural activity, a Hopfield network will
spontaneous switch to a lower-energy one until a stable pattern is found. At
this point, the network has reached a stable configuration. This configura-
tion coincides with one of the learned patterns. 102

List of Tables

1 Results from a hypothetical experiment with the setup of Figure 2 , with vary-
ing values of the distances D and the target width W 16

2 An example of a V -Table for an RL agent performing the experiment of Schultz,
Dayan, and Montague. 32

3 An example of a Q-Table. 35
4 An example of S-Table: Combinations of states and actions are associated

with the consecutive state and associated reward. 43

5 The AND logical gate 74
6 The OR logical gate 74
7 The NOT logical gate 75
8 The XOR logical gate 76

Introduction

There are many ways to understand the brain, from directly manipulating
the activity of neurons in vitro to observing the behavior of patients who
have suffered a stroke. One of the most power tools that we have nowadays
to understand the brain is through mathematical models and computer
simulations. This approach started sometime in the ’40s, but has become
prominent in the past decade due to a combination of successes, including
the recent rise of deep-learning neural networks in AI and the successes of
reinforcement learning in robotics and automation.

Over the course of many decades, a core set of computational frameworks
have become prominent in the field of computational neurosciences. These
frameworks are remarkable for many reasons. Among them, they all have
enjoyed enormous popularity, at different times, in computer science, Arti-
ficial Intelligence, and engineering; they all have found ways into cognitive
science; and they all have given rise to their own set of specialized, consistent,
and well-defined specialities.

Most importantly, all of these frameworks have become essential tools
for understanding one of more aspects of the functional neuroanatomy of the
brain.

Intuitively, the brain is a complex system, that has evolved to solve multi-
ple problems at the same time. Each of these frameworks has evolved from
an original simple question (“How should one learn from reward?”, “How
should one form memories?”, “What is the best way to recognize objects?”).
So, none of these frameworks really answers the question, “How does the
brain work?”. However, all of them provide partial answers; the brain does
learn from rewards; it does memorize facts; and it does| recognize objects.
Thus, in a way, these frameworks provide important insights into how certain
parts of the brain work, and why they work precisely they way do. Some of
these answers are partially overlapping; fading memories can be used to learn
better from rewards, for example.

What is a Model?

All of these frameworks attack these problems using a modeling angle. There
are many definitions of what a model is, but, in the simplest possible terms, a

12

model is just an abstract, simplified representation of a complex system. The
model usually simplifies certain characteristics of the system and explicitly
captures its internal workings into a set of formal equations or computational
processing steps. Once these workings are captured, researchers can do a
variety of things.

Explanation and Prediction

There are at least two reasons why the computational approach is important.
And, although intertwined, they are also separate.

The first is explanation. When we understand what a circuit does, we can
gather insight into why our data looks the why it does. You might have a
puzzling experimental results, and the model might explain why this result
occurs in the first place.

The second is prediction. A model that is a good approximation of a
system would be able to predict what would happen in the system. An
epidemiological model, for example, could be use to predict how many
people would be infected by a specific disease in the upcoming days.

There is a tension between the two. In many ways, the difference between
explanation and prediction is not so clear-cut as it seems. Because a model,
by its very nature, produces an output every time it is run, it is always mak-
ing a prediction, the difference between explanation and prediction often
becomes whether a prediction is about past or future data, or between existing
data or yet unseen data (even past unseen data).

Models as Functions

They can use the model to explain previously strange patterns of results, and,
by examining the model, better understand how and why these results arise.
They can also use the model to predict what would happen in circumstances
that have not been experimentally tested yet. And, finally, they can compare
the model to data, and examine whether the model does a good job, and to
what extent.

So, a model is a theory of a particular system’s function. In fact, mathemat-
ically, a model can be thought as a mathematical function that connects a set
of conditions X to a set of observed outcomes, Y , i.e., X → f (X)→ Y . The
model captures how and why these initial variables X affect the outcome.

Why Should We Understand The Function?

But why would one care about the function in the first place? After all,
experimental scientists do a lot of work characterizing what happens in a
system when a set of variables is changed. And having a model does not get
away with the need to run experiments: In most cases, nobody would trust
a model’s predictions blindly, and most researchers would like to see them

13

verified anyway. So, why would experimental sciences need to use models?
I like to summarize the difference between these two approaches with

the metaphor of the difference between the rules of the movement of a
chess piece and that piece’s function in a game, as in Figure 1. Consider,
for example, the knight. The knight’s movement is the most complicated
of all the chess pieces: it proceeds in every direction by two squares and
then it turns and moves perpendicularly one square, making an L-shaped
trajectory (Figure 1, left). But, if we were to observe how the knight is played
during a game, we might not be able to make this inference at all. At the
beginning of a game, for example, the knight might be used very early and
place strategically to defend the center the of the board (Figure 1, center). At
the end of a game, instead, the knight might be used to restrict the movement
of the king in preparation for a checkmate (Figure 1, right). When we, as
neuroscientists, perform experiments on how a certain brain region is being
used, we are in fact just observing how the brain might be using the same
chess piece under different conditions. If all we can say about the knight is
that it is being used to “defend the center at the beginning” and to “attack the
king in endgame”, we are left with little explanatory power. Even worse, if all
we can say is that “the knight is used at the beginning and the end of a game”,
we are left with not much knowledge than what we started with.

If, on the other hand, we can describe exactly how the knight moves, then
we can make sense of all of its functions, explain why the player has used it
that way, and predict how and when the knight will be used in the future.

Figure 1: A comparison of the
knight’s “computations” (left) and
two of its possible “functions”: de-
fending the center, at the beginning
(center) and supporting a check,
in endgame (right). Although the
functions might be different, the
computations remain the same, and
in fact it is the piece’s computations
(the rules of movement) that ex-
plain its use in different phases of
the game.

Two Traditions of Modeling

In a landmark paper, Breiman1 identified two traditions of statistics, one he 1 []breiman2001statistical

called data modeling and one he called algorithmic modeling.
In the most general term possible, a model is a function f (X) that con-

nects a set of data X to a set of outcomes Y , i.e., X → f (X)→ Y . This ex-
tremely general definition holds for anything we might want to call “model”:
It works for detailed models of brain networks as well as for statistical mod-
els. Whether you are creating a large neural network that simulates how the
visual brain sees the world or you are just fitting a linear regression model,
you are still doing the same: creating a function that makes sense of the data.

The difference is how these two traditions think about this mysterious

14

function. The data modeling approach works a in sort of top down manner:
It starts with some assumptions about the nature of the data, and proceeds
to derive predictions about the outcomes from these assumptions. When a
statistician states that two variables need to be “independent and normally
distributed”, they are doing precisely that–making assumptions about the
processes that generate the data: in this case, that the data might be generated
by sampling without replacement from random pool of values with a certain
mean and variance. From this assumption, a statistician can derive very
precise predictions about the observed outcomes Y ; for example, they might
derive the probability that all outcomes come from the very same pool.
Because this approach starts with assumptions about the function f that
generates the Y , it is called data modeling.

However, one could also be agnostic about these hypothesis, and simply
use mathematical tools that approximate the underlying function from the
constraints posed by the data itself. Breiman called this approach “algorith-
mic”; nowadays, this approach is commonly known as machine learning.

These two traditions reverberate throughout any modeling approach, in
any field I have ever seen. In old fashioned, symbolic AI, adherents to the
two traditions were called sometimes called “neats” and “scruffies” 2 and 2 I personally love these terms. Full dis-

clousure: I am a scruffy.in Computational Psychiatry, for example, these two approaches are called
“explanatory models” and (much more transparently) “machine learning”.

Confusingly, the same concepts, abstractions and techniques are some-
times be used in both approach. Take, for instance, the case of the technique
called linear regression: it consists of using a simple model in which the
effects of a series of independent variables add up to determine the value of a
dependent variable. This modeling technique is commonly used in statistics
be to test the existence of a relationship between two variables (an example
of data modeling) and but it can also be used to approximate an unknown
function, as it is used in a special technique called LASSO (an example of
machine learning). Even more dramatically, neural networks can be taken as
a structural model of the brain (an example of data modeling) but can also be
trained, as we will see, to approximate any function (which is way they are
ubiquitous in contemporary machine learning).

These ambiguities nonetheless, in this book I will focus on computational
models of the explanatory tradition. All of the models described here embody
a theory about a specific brain function (about learning, memory, perception)
and use different abstractions to make sense of what we know.

An Example of Explanatory Model: Fitts’ Law

To understand the different facets of an explanatory model, let’s consider a
simple one. It is a mathematical model of response times for motor move-
ments, known as Fitts’ Law 3. Fitts’ Law is an equation that predicts the time 3 Paul M Fitts. The information capacity

of the human motor system in controlling
the amplitude of movement. Journal of
Experimental Psychology, 47(6):381, 1954

required to move a hand (or a cursor, or a pen) to a target area that has width

15

W and is located at a distance D from the current position of the hand. Figure
2 illustrates a typical example: calculating the time needed to move a cursor
from one position to a different area. According to Fitts’ Law, the time T is
related to width W and distance D by Equation 1:

T = a+ b log2

(
2D
W

)
(1)

Figure 2: A possible application of
Fitts’ law: Determining the time
it takes to use a mouse to move a
cursor (black arrow) from its origi-
nal position to a new area (the grey
circle)

D

W

where a is an intercept, and can be consider the minimum amount of time
required to initiate any movement, while b is a scaling factor, and can consid-
ered as a general parameter that captures an individual’s speed of movement.

Inside a Model: Fit, Features, and Free Parameters

If we peek inside a model (any model) we can find some common elements.
First, any model must have an output. In the case of Fitt’s law, the output is
the movement time T . This output might or might not reflect the data; the
degree to which the model’s output matches the data is called the model’s fit.

Second, each model contains certain quantities that capture specific
aspects of the outside world and environment. In Eq. 1, for example, the
quantities W and D (width and distance of the target) represent everything
we need to know about the world in which we need to make a movement.
These variables are called features; in choosing the appropriate features,
the designer of a model implicitly defines the levels of abstraction and the
degree of simplification they want to impose on the world. Note that, once
the level of abstraction is chosen, the features are, in principle, measurable
properties of the outside world. (A partial exception to this rule is represented
by contemporary deep-learning models, which are trained on raw data and are
capable at extracting features on their own),

Finally, Eq. 1 contains two more variables, a and b. Unlike D and W ,
they do not represent a measurable property of the world; in fact, there is no
way they can be measured independently of the the equation itself. These
variables, which mediate the effect of the features (the outside world) on
the output, are called free parameters. One of the defining characteristics of
explanatory models is that, because they embody a theory, it is somewhat
clear what their parameters represent. By looking at equation 1, it is clear
that no response time time can ever be smaller than a; thus, a can be thought
of as the smallest time it takes to initiate a movement on the given device.
The paramenter b, on the other hand, mediates the additional time it takes to
move a cursor to a given location. Thus, we can think of b as representing
the effort necessary to control the movement itself. In general, a movement
will be slower as D grows and faster as W grows, but some individuals
will be faster overall, while others will need more time to move the cursor;
these differences will be reflected in different values of b, and we can say
that, when b is smaller, the amount of effort that the movement takes is also
smaller.

16

Fitting a Model

But, now that we have identified features and free parameters, how do we
know whether our model is any good?

To do so, we need to find the specific parameters the model that better fit
the data. In the case of Fitts’ model, that comes down to finding that data
values of a and b that reduce the difference between the model’s prediction
Y ′ and the actual data Y . This difference, or any other difference we want to
minimize, is called the loss function.

Suppose, for instance, you ran an experiment varying the distance D from
a cursor to a target are of width W , and you obtain the data from Table 1.

W D Time (s)
100 300 3.36
150 50 1.08
220 100 1.16
110 200 3.07
40 250 4.12

Table 1: Results from a hypothet-
ical experiment with the setup of
Figure 2 , with varying values of
the distances D and the target width
W

We can define a loss function that quantifies how close the predictions of
the Fitts model come to the times recorded in the third column in the table.
For each combination of values of the parameters a and b, we can plug in the
different values of W and D and compare the model’s predictions Y ′ against
the five observed values Y . A convenient way to do so is to calculate the sum
of squares, much as it is done in statistics:

L = ∑
y∈Y

(y− y′)2

Fitting a model is, therefore, the process of finding the values of parame-
ters a and b that minimize the output of this equation.

In some cases, you might be lucky enough that there are some specific
formulae that let you calculate the ideal parameters in a few simple steps.
This is the case of linear regression. It also happens to be the case of Fitt’s
law. If you consider equation 1, you’ll notice that the it is essentially a linear
equation of the form y = a+ bx, once you consider log2(2D/W) as your
independent variable x. To find the two values of a and b that create the better
fit, you simply combine all of the pairs of W and D into a single variable
x, concatenate all of these variables into a vector X , and apply the linear
regression formula: (XT X)−1XTY .

The result, in this case, is a = 1.4438 and b = 0.7560. With these param-
eters value, the loss function measures only 0.093. Notice that, to calculate
these values, we had to change the model’s features: Fitts’ model sees the
world as made of distances and widths, but the linear regression model sees
only a single value x. This is another case in which you need to transform the
data to fit it into the model’s worldview. But is this a good value? You can
judge for yourself: Figure 3 shows the predictions of Fitts’ Law, represented
as line, against the experimental results.

Figure 3: Predictions of Fitts’ Law
(red dashed line) against the ex-
perimental results of Table 1 (blue
dots). The values of features W and
D have been combined into a single
value x, and the parameters a and b
were fit with linear regression

But what if we cannot use a direct formula to calculate the best values
of a model’s parameters? In the most general case, it is possible to use
brute force and examine multiple values of a and b until we identify the
combination that minimizes our loss function. For example, one could sample
all values of a and b from 0.5 to 1.5 in increments of 0.01, and compute the
loss function for each combination. This approach, called grid search, gives

17

you an approximate idea of fit of Fitts’ model within a slide of its parameter
space, as shown in Figure 5. In the figure, colors represent the magnitude of
the loss function, and darker areas represents smaller loss value and, thus,
better fits. The cross sign “+” marks the position, in the parameter space, that
corresponds to the solution found by linear regression.

Figure 4: Loss function for the Fitts
model across different values of pa-
rameters a and b, when compared
against the data in Table 1.

However, this brute force, grid-search approach is rarely used in practice,
as sampling all of the parameters is often unfeasible–especially as models
become more complex and take longer to run. For example the plot in Figure
5 was generated by examining 10,000 combination of a and b values; such
as a sample might not be feasibile. Furthermore, grid search requires setting
a predefined sampling that discretaizes the possible values of a and b. For
example, the grid search examined cases in which a = 1.44 and a = 1.45, but
never examined the case in which a = 1.4438; such a value would, in fact, be
invisible to the method.

For all of these reason, it is common to use special techniques called opti-
mization algorithms instead of grid searches. These algorithms capitalize on
the fact that, in most models, similar parameter values would produce similar
results in terms of the model’s loss function. In Fitt’s law, for example, chang-
ing the value of a from 1.44 to 1.45 does not produce appreciable changes
in the loss function, no matter what the value of b is. Furthermore, the direc-
tion of the changes in the loss function is usually consistent: If changing a
from 1.44 to 1.45 increases the loss function, then a further change of a to
1.46 would likely result in an even larger loss value. In other words, that the
surface of the loss function over the two parameters’ values is smooth. And
smooth functions can be explored fairly easily by examining finding out the
direction in which the parameters can be changed to reduce the loss function.
This is exactly what optimization algorithms do:they start with an initial
guess for the model parameters, and modify them iteratively in the direction
that reduces the loss function, until a minimum value is found4. Optimization 4 For this reason, these algorithms are also

called minimization algorithms.algorithms explore only a small portion of the parameter space, but they
quickly converge over the correct solution. Figure 5 depicts the points (in
white) explored by one such method, the Nelder-Mead algorithm, to find the
values of a and b that minimize the loss function of Fitts’ Law, starting at
a = 1, b = 1 and terminating at the same values that were identified by linear
regression.

Figure 5: Points of the parameter
space explored by the Nelder-Mead
algorithm

Models as Theories and Models as Measures

Every explanatory models is an abstract, simplified representations of some
system—a theory of how the system works. When fitting a model, however,
researchers might be interested in two very different things: the theory itself,
and the properties of the system that the theory allows to measure.

18

Models as Theories

In the first case, the researchers might be interested in the model in itself.
Every model, in a sense, is a theory, and the researchers might have devel-
oped the model as a new theory that explains how and why a particular set of
phenomena happen. Fitting the model to empirical data is done as a way to
provide a quantitative measure of how good of a theory the model is.

This is exactly how Fitts’ Law was originally conceived: it was proposed
as a principled way to make sense of motor movements. Like much of
the ’50s mathematical psychology work (such as the work of Hick 5 and 5 William E Hick. On the rate of gain

of information. Quarterly Journal of
Experimental Psychology, 4(1):11–26, 1952

Hyman 6 on response times in the presence of multiple options), it was
6 Ray Hyman. Stimulus information as a
determinant of reaction time. Journal of
experimental psychology, 45(3):188, 1953

deeply influenced by information theory7. In his paper, Fitts derived these

7 The use of logarithms in base 2 is a dead
giveaway!

equations from a purely theoretical point of view. In this sense, this model
was a representation of the computational efforts that brains engaged with
when performing a movement. A very successful representation, as evidenced
by the sheer amount of citations that the original paper keeps amassing over
the year. In his paper, experimental data were used corroborate the original
intuition.

Models as Measures

There is a second view of models, which is related and easily confused with
the first one but remain substantially different. In this view, researchers
typically assume that a given model is correct, and is interested in the values
of the model’s parameters.

Since it was originally proposed, Fitts’ Law has become a de facto assump-
tion in much research in Human Factors and Human Computer Interaction—
that is why it is called Fitts’ Law. In this case, the model is not used as a
representation, but as a measurement method. It is assumed that the model
is either true or a sufficiently accurate representation, and used to make
predictions. Do you want to calculate how easy it is to move a mouse to a
“submit” button on a login page? You can use Fitts’ Law. Have you created a
new interface that uses special laser pointers pointed to an LCD? It will still
follow Fitts’ Law, but you might need to collect some data and establish new
values of a and b for your interface.

Because the parameters of an explanatory model are conceptually clear,
it is also possible to use the model to make sense of complex data patterns.
As noted above, the a and b parameters can be interpreted as the time it
takes to initiate a movement and a the effort it takes to perform it. suppose
you want to investigate whether it is easier to use a computer mouse or a
touch device (like a smartphone’s screen) to drag a window. You can collect
data and extract the values of a and b for both devices. You might find, for
example, that a is smaller for the touch device, as it is faster to point your
finger than it is to grab a mouse and click, but b is smaller for the mouse, as
it can cover longer distances much more easily than the finger. This would be

19

an insightful analysis, and would help you conclude, for example, that touch
devices are better for small screens and mice are better for larger ones.

Parameters can be also used to investigate different between individuals.
In general, some people will be consistently slower or faster at movement
movements, and these differences would be reflected in different values of a
and b.

An entire class of explanatory models described herein, that of accumu-
lator models, was designed precisely as way to measure unobserved but
conceptually clear processes from the distribution of response times—and
they are incredibly successful at it.

Levels and Traditions of Models

As I mentioned at the beginning of this chapter, a useful model is simpler
than the object it is trying to simulate. When deciding what to model, one
of the fundamental choices is the level of abstraction at which you intend
to capture the phenomenon of interest. Consider, for example, the case of a
scientist interested in developing a model of memory. One choice would be
to start from first principles: what is memory for? If memory is necessary to
make relevant events of the past available, it likely mirrors the statistics of the
environment, so that memories of very common events are more likely to be
remembered than memories of less likely ones.

A different approach would be to abstract some feature of memory and
try to capture it with a simple mechanism. For example, memories tend to
fade with time; thus, we can imagine memories being discrete entities whose
availability decays over time. We could borrow the metaphor of radioactive
decay, and approximate forgetting with an exponential decay.

Yet another approach would be to consider where in the brain memory
is implemented. We know from patient studies that memories are stored (at
least initially) in a circuit known as the hippocampus. The hippocampus, and
in particular an area known as CA3, has a particular structure: it is a single
layer of interconnected neurons. We can start by modeling this structure,
the interaction between the different neurons, and see how memories can be
represented in the network of neurons.

All three of these approaches have been attempted, and they are covered
in Chapters 4 and 6. David Marr, one of the pioneers of computational
approaches in the study of the brain and cognition, proposed a classification
of these approaches that has proven influential 8. According to him, each 8 David Marr. Vision: A computational

investigation into the human representation
and processing of visual information. W. H.
Freeman & Company, 2010

phenomenon could be modeled at three levels:

• The functional level9. At this level, the experimenter is investigating 9 In Marr’s book, this level is actually called
“computational”. This is often confusing,
since all of the other models are also
computational in the common sense of the
word. So I prefer to use “functional” here

the general structure of the problem, and typically asks what would be
the most general and optimal solution. A memory researcher who uses
a Bayesian approach to capture when memories are more likely to be

20

retrieved is working at this level.

• The algorithmic level. At this level, a researchers outlines the basic ele-
ments of the model, including how to represent the problem (the features)
and how the model is working step-by-step. The memory researcher who
adopts the metaphor of radioactive decay and tries to predict the effect of
time on forgetting works at this level.

• The implementation level. At this level, the modeler seriously consider the
nature of the physical processes that occur. The memory researcher who
decided to study memory by modeling the interactions of neurons in the
hippocampus would be working at this level.

Much has been written about these levels of abstractions, and many
authors have proposed their own classifications or expanded them. There is
no right or wrong levels; each and every level provides different insights into
the nature of thought. Similarly, the levels are not som clear-cut. For example,
is Fitts’ Law a model that exists at the functional or at the implementation
level? And, finally, each of these approaches stills remains an abstraction
of the original phenomenon—even if you dig deep into the implementation
level.

Symbolic vs. Connectionist Traditions

Historically, when the idea of understanding brain function through modeling
was still in its infancy, the field of cognitive science, cognitive psychology,
and artificial intelligence were very close and almost indistinguishable. But
even then, modelers aligned themselves in two different traditions, which
have often been name “symbolic” and “connectionist”. Symbolic models tend
to explictly represent abstract concepts and their relationships, much in the
same way as variables are represented in a computer program. They make for
often elegant theories, but they tend to overlook the nitty-gritty details of how
networks of neurons carry out the computations. For example, in Section I,
we will present a model of memory in which different features of a fact are
represented as a list, so that “The canary is a yellow bird” becomes something
like “[(Object : Canary), (Type: Bird), (Property: Yellow)]”. The use of such
representations has earned this tradition the name “symbolic”.

In the brain, of course, these lists do not exists, and properties such like
being a “bird” and being “yellow” are represented in a distributed network
of neurons. The specific ways in which the brain encodes and modifies
these representations can be ignored only up to a certain point. A group of
researchers have argued, since the very beginning, that it is better to start
right there with a better understanding of how networks of neurons represent
concepts and carry out computations. This school of thought has given rise to
modern neural networks (including those used in contemporary deep-learning
AIs) and is has become known as “connectionist”.

21

These two traditions have often being in sharp disagreement with each
other. Over the course of decades, they have taken turns in dominating the
cognitive neurosciences (and also the fields of artificial intelligence and
machine learning). As usual, I maintain that there is no unique, correct
answer as to which one is the best—it largely depends on what one sets out
to achieve and (why not?) on individual preferences. These two traditions
are reflected in the structure of this book, whose first part contains symbolic
models while its second part contains connectionist models.

What This Textbook is Not

A few words of caution. This is largely a textbook I have written because
I needed to create a consistent set of materials for my own classes at the
University of Washington. Although I could refer my students to individual
papers or tutorials, I was constantly bothered by the lack of an easy way to
integrate between different aspects of my classes. So, eventually, during a my
2020-21 sabbatical, I finally got around to start this textbook.

Compared to those textbooks, the material covered here is much more
focused on the systems-level neuroscience than on single neuron properties.
Similarly, the focus is much more on large-scale theories (RL, memory
associators) than on biophysical models.

Part I

Algorithmic Models

Reinforcement Learning

The first framework we are going to see and examine is Reinforcement
Learning (RL). In essence, RL is a minimalistic theory of how an agent
should adapt to an environment. Originally, the term was used to describe a
class of theories put forward by psychologist to describe how animals and
human would change behavior when given rewards, like food pellets. A
“reward”, in that literature, was technically called a “reinforcement” because
it would reinforce (i.e. make more likely to occur) a specific behavior. This
set of theories, together with their somewhat confusing lexicon, remained
dominant in the animal learning literature for decades after they had basically
faded from human psychology research.

In the meantime, these theories and their namesake were borrowed by
early A.I. researchers who, over time, developed RL in one of the most
sophisticated mathematical framework for machine learning 10. Current RL 10 Richard S Sutton and Andrew G Barto.

Reinforcement learning: An introduction.
MIT press, 2018

theory is responsible for some of the most incredible advancements in A.I.,
including successes in the ability to achieve human-level and super human-
level performance in video games 11 and classic board games, such as Go 11 Volodymyr Mnih, Koray Kavukcuoglu,

David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Mar-
tin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013

12–feats that were unthinkable just a few years back.

12 David Silver, Aja Huang, Chris J Maddi-
son, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with
deep neural networks and tree search. nature,
529(7587):484–489, 2016

Importantly for us, the mathematical theory of RL came full circle when,
in the ’90s, it was discovered to provide a remarkable good fit and an elegant
explanation for the dynamics of the brain circuitry of reward, learning, and
motivation 13. After all, it was found out, reinforcement learning (the mathe-

13 Wolfram Schultz, Peter Dayan, and
P Read Montague. A neural substrate of pre-
diction and reward. Science, 275(5306):1593–
1599, 1997

matical theory) did provide a surprisingly good explanation for reinforcement
learning (the psychological phenomenon), even if the two had run on parallel
tracks for decades!

Overview of RL Theory

RL is a branch of machine learning, the field of computer science that studies
how an artificial computational “entity” (which, depending on the sub-field,
can be called a classifier, a model, or a robot) changes its behavior and learns
from new data. Machine learning algorithms are typically divided into two
large classes: supervised, in which the programmer provides some form of
ground truth that the machine needs to learn; and unsupervised, in which the
programmer provides nothing and the algorithm digs through data extracting

26

patterns. For instance, a classifier is a supervised machine learning system–
the programmer provides an initial set of exampled (or “labels”) that the
algorithm uses to learn the proper classes. A clustering algorithm, by contrast,
is unsupervised: once it is given data in the proper format, it will simply do
its job and divide it up in the requested number of clusters.

RL does not quite fit nicely in either class. For this reason, it is called a
semi-supervised machine learning framework. It is semi-supervised because
the programmer does, in fact, provide something to the algorithm but not
nearly enough information to be considered a form of ground truth. The
information provided by the programmer is typically in form of rewards, and
leaves the RL agent in charge of making sense of them.

Agents and Environments

In RL, the problem is defined in terms of an agent and an environment. For
simplicity, I will consider the simple case in which both the environment
and the agent are discrete. An environment, in this sense, is a collection of
possible states of the world S = {s1,s2 . . .sS}, each of which is associated
with a corresponding reward in the set R = {r1,r2 . . .rS}. Each state s is a
unique identifier, and it is up to the modeler to decide what a “state” is. The
reward r is a scalar value, and can be positive or negative; 14. In practice, the 14 RL researchers call “negative rewards” the

cases in which r < 0. This is often confusing
to other researchers, because most people
assume that “rewards” must be positive; and
is especially confusing to psychologists, for
whom the expression “negative reward” has
a specific but different meaning

reward value is r = 0 for the greatest majority of states.
The agent is defined as having a set of actions available a1,a2 . . .aN that

are available and a policy π that defines how the agent acts, and might change
over the course of learning. Technically, a policy is defined as a function
that maps each state s of the environment to a probability distribution over
the actions, that is, π : a→ P(a). The agent has only one goal: to maximize
the total number of rewards over time, from the present moment onwards.
Assuming that time is discrete and that the present moment is indicated as t,
this goal is equivalent to maximizing the quantity Rt so defined:

Rt = rt + γrt+1 + γ
2rt+2 + · · ·+ γ

nr∞ =
∞

∑
t=0

γ
trt (2)

In Eq. 2, 0 < γ < 1 is a temporal discounting parameter that ensures that
R converges to a finite amount. It captures the intuitive idea that, given two
identical rewards, the one that arrives sooner is better (after all, we have no
guarantees about the distant future). The temporal discounting is key to avoid
paradoxical situations, like Bernoulli’s paradox, that otherwise plague classic
decision theories.

Finally, we need to define how the agent and the environment interact with
each other. In RL, the agent and the environment interact in a loop in which,
at every time point t, the environment presents the agent with a state st and
a reward rt and the agent responds by performing an action at . Performing
at results in the environment undergoing a state transition, after which it will

27

present the agent with the new state st+1 and a new reward rt+1. This loop is
represented in Figure 6.

Figure 6: The RL loop

Learning the Values of States

The juice of RL is the theory behind how the agent learns. In theory, the
agent could simply sample random states and actions for a long time, keeping
track of all the outcomes, and estimate the average result of each action; that
is the Monte Carlo or statistical approach. Alternatively, the agent could
decide on a specific set of rules to follow (its policy) and iteratively modify it
and refine it as it goes; that is the dynamic programming approach.

Although both approaches would work and would equally count as RL,
the most common solution in RL is to use temporal difference (TD) methods,
which were originally proposed by 15. TD-based methods have many advan- 15 Richard S Sutton. Learning to predict

by the methods of temporal differences.
Machine learning, 3(1):9–44, 1988

tages, including the fact that the agent learns incrementally and on-line (that
is, while performing the task), converge to optimal solutions, and consume
very little in terms of time and memory. All of these characteristics make
them also desirable for biological agents as well.

TD-learning methods exists that learn either the value of states s or the
value of actions a for each state. We will consider the simple case of an
agent that is learning about the value of the states first. In this case, we are
assuming that the agent is either not interested in estimating the values of
actions, or they might not have any control about their environment.

Learning, in this context, means that the agent need to estimate the value
of a particular state, that is, how many rewards can be expected from now
on, given that we are in this particular state. In other words, the value of a
particular state V (st) represents the agent’s expectations about Rt .

Now, if the agent’s expectations were, in fact, absolutely correct, then
at any point in time, the agent’s value for a state would perfectly match the
expected future rewards, that is, V (st) = Rt , V (st+1) = Rt+1, and so on.

That means that:

V (st) = Rt

= rt + γRt+1 (3)

28

But, since in a perfect world V (st+1) = Rt+1, we can conclude that:

V (st) = rt + γV (st+1) (4)

This simple considerations gives us a way to actually learn V . If, initially,
all of our values for V are simple guesses, as time passes our estimates
are going to become more precise because we gather experience with the
environment and with the true rewards r that are delivered at any state.
Because the more recent estimates are more precise than older ones, we can
simply revise the older based on more recent. Suppose that, at time t, our
previous estimate V (st) was off by a certain error, which we indicate as δt .
How do we estimate δt? Using Equation 4:

V (st)+ δt = rt + γV (st+1)

δt = rt + γV (st+1)−V (st) (5)

Now, Equation 5 implies that the agent can estimate the error δt by simply
comparing its own subsequent evaluations. Specifically, at time t + 1, the agent
can update its previous estimates of V (st) by a fraction of the error:

Vnew(st)←Vold(st)+αδt (6)

In this equation, the parameter α , which determines how much of the RPE
is used to correct the estimates, is known as the learning rate.

Important Implications of δt

The centerpiece of RL agents is the term δt , which is also known as the
reward prediction error or RPE. It is the RPE that drives learning and, under
reasonable policies like Eq. 8, also drives behavioral change. The embeds
several interesting properties.

• RL agents are driven by relative, not absolute rewards. This is also the
reason why RL modelers are a bit cavalier in using positive and negative
values in reward terms; a negative reward value is not necessarily a
“punishments”; all that matters is how big that reward is compared to
others;

• What drives change and learning is the difference between the expected
and the real outcomes of actions. In other words, learning and changes in
behavior are driven by surprise:

• Change propagates back in time, across states and actions. Because the
terms in Eq. 6 are relative in time (t and t + 1), the effects of δt move
backwards in time over multiple passes.

29

• Learning and changes in behavior happen even in absence of rewards.
This is perhaps the most important feature in RL theory: The δt terms does
not reflect differences in rewards, but differences in reward expectations:
Even when the reward term r = 0 in Eq. 5, it is still possible to obtain
positive or negative values of δt that are propagated back in time. This
makes it possible to apply RL to environments where true rewards (i.e.,
r 6= 0) are rare and occur only after complex sequences of actions.

The Reward Prediction Error and Dopamine

RL would have remained a nifty mathematical theory, if it weren’t for the
discovery that it provides ridiculously precise explanations for the firing of
dopamine neurons.

Dopamine is one of the two neurotransmitters that regulate pleasure and
happiness in the brain16. Of the two, dopamine is the one with the most 16 The other one is serotonine. A common

joke, in neuroscience, is that there only two
things you enjoy in life: serotonine and
dopamine.

dramatic effects. Dopamine release produces intense feelings of pleasure
and satisfaction. The effects of dopamine are so intense that, given the
opportunity of pressing a lever to activate an electrode placed in dopamine-
releasing neurons, rats would happily prefer to starve than to give up the lever
for food. Drugs of addiction, like cocaine and nicotine, work precisely by
activating, directly or indirectly, dopamine receptors in the brain 17. 17 A David Redish. Addiction as a com-

putational process gone awry. Science,
306(5703):1944–1947, 2004

Dopamine can be thought of as the universal coin in which all of the
possible forms of primary rewards that can be gathered are translated to. This
also lets the brain compare different types of primary rewards (let’s say, food
vs. money).

Despite the mounting evidence for the importance of dopamine, the exact
function of dopamine remained elusive. Primary rewards, for example, nor-
mally elicit strong dopamine responses. However, in laboratory experiments,
during which multiple trials are administered, the responses of dopamine
neurons quickly disappears. More surprisingly, dopamine neurons often begin
responding at apparently random moments of the experiment, but remain
silent when the reward is presented.

These results remained confusing until Wolfram Schultz, Peter Dayan, and
Read Montague published a landmark paper in 1997 18. In that paper, they 18 Wolfram Schultz, Peter Dayan, and

P Read Montague. A neural substrate of pre-
diction and reward. Science, 275(5306):1593–
1599, 1997

summarized the main findings from a prototypical experiment, and explained
them in the context to RL (Fig. 7).

In psychology and behavioral neuroscience, the prototypical experimental
paradigm to study reward is called “classic conditioning” and requires
the administration of a reward (typically, food) following a specific cue or
stimulus. This is the exact same design used by Pavlov in his experiments
with dogs. In Schultz’s lab, the subjects were primates, the cue was a visual
stimulus on a computer screen, and the reward was a drop of juice. Four main
effects had been consistently observed:

• Dopamine neurons initially fire in response to the primary reward (the

30

Figure 7: Data and model from On
the left, trace of dopamine neuron
firings (“rasterplots”) recorded
from a primate performing a simple
cue-reward association task. On the
right, model predictions for values
for the reward r at time t, the state
value V , and the reward prediction
error δt .

juice; see top plot in Fig. 7A)

• Over time, the response of dopamine neurons becomes weaker and weaker,
until it completely disappears (see middle plot in Fig. 7A).

• At the same time, dopamine neurons begin responding to the cue instead
of the primary reward, until the cue “absorbs” all of the response of
dopamine neurons.

• If, after training, the reward is unexpectedly omitted, the activity of
dopamine neurons drops below baseline (see bottom plot in Fig. 7A).

Schultz, Dayan, and Montague showed that this behavior can be under-
stood if one identifies the response of dopamine neurons as the δt term. In
this case, the experiment has two states, corresponding to the moment at
which the cue is presented (scue) and the moment at which the juice is pre-
sented (s juice). The only reward r corresponds to the juice and is delivered
(obviously) at state s juice. The agent has no actions, and all the Q(s) values
are simply associated with the different states (they are indicated as V (s) in-
stead of Q(s) in Fig 7). Initially, the agent has no expectations, and the Q(s)
values of all states is zero. The first time a reward is given, the δt is positive
(Fig 7B, top panel).

Following Eq. 6, the value of Q(s juice) increases over time. The value
of Q(s juice) increases until its value is exactly equal to the reward r, that is,
Q(s juice) = r. At that point δt = 0, and dopamine neurons stop firing.

In the meantime, the Q-value of state scue keeps increasing, because it
consistently leads to Q(s juice). As shown in Eq. 6, even in absence of reward,
the value of Q(scue) will be updated until it matches Q(s juice). As soon as
the cue appears, the δt will be positive (because the primate knows that it has
entered a state that, eventually, will lead to a reward) and dopamine neurons
will begin firing (Fig 7B, middle panel).

31

Finally, if the primate enters state s juice but, this time, no juice is delivered,
the δt will be negative, because the high value of the juice state (which
normally includes the reward) will be followed by a r = 0 (Fig 7B, bottom
panel).

Implementing an Agent

Although the mathematics of RL are fairly simple, it is often difficult to
imagine how such an agent would be implemented in practice—what does it
mean, for example, to “update the value of the state at time t”? When are the
updates made? Fortunately, in a simplified environment made of discrete and
finite states, it is very easy to imagine such an agent and to write code that
implements it. In this paragraph, we are going to sketch out how to do so.

Implementing an Environment

RL is based on two elements, an agent and an environment, that interact
with each other (Figure 6). Thus, it is essential to define an environment or
task that our agent needs to be interacting with. This environment is defined
by the two transition functions, the state transition function and the reward
transition function.

The “environment” does not necessarily need to be a self-contained
world; very commonly it can be a simple task. In the case of the primate
cue-learning task described above, for example, the “environment” is the
sequence of predefined states “cue”, “delay”, and “juice”. Because the
task is a Pavlovian conditioning task, there are no “actions” that the animal
needs to take; the environment transitions from one state to the other by
itself. Furthermore, these states always repeat in the same order, so that the
probability of transitioning from “cue” to “delay”, or from “delay” to “juice”,
is always 1.

When defining an environment, it is common to introduce an terminal
state, which we will indicate with the word None, that does not represent any
“real” state and simply signifies the end of a trial. This is needed because, in
RL, learning takes place in between the transition between states, and the
terminal state is needed to learn the value of the very last state (in this case, to
learn the value of s juice).

Implementing an Agent with Lookup Tables

The imaginary agent that I am going to describe here, and which will be used
as a reference for most of this chapter, maintains a memory of all the states
that it has encountered in a lookup table. This table, which I am going to call
the V-table, is an approximation of the V function, and it simply lists all the
possible environment states s1,s2 . . .sN in one column, and the agent’s current
estimates of their values V (s1),V (s2) . . .V (sN) in the other.

32

All of the agent’s operations can be reframed in terms of this table. When
the agent is evaluating a given state, it is just scanning the table until it finds
the corresponding entry in the state column and returning the corresponding
number on the same row in the value column. When the agent is learning, on
the other hand, it is simply updating a specific number of the value column.
So, the operation Vnew(s)←Vold(s)+ δ translates to “add the number δ to the
number in the value column that corresponds to the row where that has s on
the state column”.

For example, in the case of the primate experiment described by Schultz,
Dayan, and Montague (Figure 7), the V -table would look, at the very begin-
ning, like Table 2.

State st Value V (st)
Cue 0

Delay 0
Juice 0

Table 2: An example of a V -Table
for an RL agent performing the
experiment of Schultz, Dayan, and
Montague.

Figure 8 shows the results of running a simple agent that learns what to
expect from this simple task over time. The Figure shows the changes in the
V -table as the agent learn, sampled at times t = 1,10 and 100.

Figure 8: Changes in the V -table
as an imaginary agent learns in the
primate cue-learning task described
in the paper by Schultz, Dayan, and
Montague.

A More Complex Example

Now, let’s imagine a slightly more complicated agent: one that simulates a
mouse navigating a maze in search of food. The maze is made of 16 cells
arranged in a 4-by-4 pattern, like the one in Figure 9.

Figure 9: A simulated mouse in a 4-
by-4 maze, with a reward (cheese)
in position (3,3)

The maze is composed of 16 cells, which we can indicate by the pair of
their (x, y) matrix coordinates; for the example, the mouse in Figure 9 is
located in cell (1,1). The environment also contains one block of cheese in
cell (3,3), which will function as a reward for the agent.

In this simplified world, the environment’s states are the maze’s cells and
can also be named after their coordinates; for example, the initial state is
indicated as s1,1. In the maze, a reward is only given when the agent reaches
the cell in which the cheese is located, corresponding to state s3,3. Thus, the
reward function is defined as such that rt = 1 if the current state s = s3,3, and
rt = 0 in all other cases (that is, when s 6= s3,3).

In this environment, a trial consists of an agent’s random walk through the
maze until it finds the cheese reward. At that point, the trials ends–an event

33

that is represented, again, by the special terminal state None.
In Figure 8, the agent’s V -table was visualized as a bargraph, with the

height of each bar representing the value of the corresponding state. This
representation can be used for the maze environment as well. However,
since the maze is a 2D world, it is more intuitive to visualize the V -table as
a matrix, with each matrix cell corresponding to the homologous position
in the maze. Instead of bars of different heights, the value of each state will
be visually represented by the color of the cell in the matrix. Using this
representation, Figure 10 shows how the internal representation of the V -table
values change as they are learned by the mouse agent after 1, 10, or 1,000
trials (that is, random walks).

.

Figure 10: Representation of the
Internal V -table of an agent explor-
ing the maze of Figure 9. In each
matrix, the color represents the in-
tensity of the V value associated to
each cell. The colorbar on the right
illustrates the mapping between
color and V value.

The progression of learning in Figure 10 is very typical. The agent learns
on the first trial that state s3,3 contains a reward and has, therefore, a higher
value (shown by the slightly lighter hue). However, it will take a while for
this learned value to propagate back to previous states. Because the agent
moves at random, the probability of reaching the reward can be calculated
exactly, and corresponds to the probability of taking the consecutive steps
that must be taken to get to cell (3,3). In the four cells that are located imme-
diately North, South, East and West of the cheese, for example, the simulated
mouse has 1 out of 4 chances of reaching the reward in the next move; for
this reason, the values in these states are approximately 1/4 of the value of
the reward state s3,3. The states that are immediately North-East, South-East,
North-West, or South-West of the cheese have a 1/2 × 1/4 chance of reaching
the cheese, because each of them has two opportunities out of four of landing
on a state that has a 1/4 chance of leading to the cheese, and so on. As the
mouse gathers more and more experience in the maze, the values of the states
better approximates these theoretical values.

Learning the Values of Actions

The Agent’s Policy

The previous sections above have described how an agent learns. However,
they says almost nothing about how an agent acts. In RL, the two concepts

34

are kept distinct; Equation 5 could be used to correctly estimate future
rewards whether an agent picks its actions at random (as in the example of
Figure 10) or it always picks the best action based on current estimates. Of
course, an agent that picks at random will collect less rewards over time and
learn more slowly, but it will, nonetheless, still learn the best course of action.
Nonetheless, knowing what is the best course of action does not dictate how
an agent chooses its next action. Conceptually, the agent can behave poorly
even if it knows better 19. 19 Most of us do; therefore, no judgement.

The procedure by which an agent chooses what to do is called its policy,
and, as anticipated in the first section, it is defined as a function π that is,
in essence, a probability distribution function over all the possible actions
a1,a2, . . . ,an.

In general, a good policy should balance exploration vs. exploitation, and
select the best actions (based on current estimates) most of the time while
also leaving some room to explore actions that are currently perceived as
suboptimal.

There are two typical solutions that are used for agents. The first solution
is the so-called ε-greedy policy. In this policy, the agents sets a small thresh-
old ε , then draws a random number between 0 and 1. If the number is greater
than ε , then the agent performs the action with the highest possible Q value.
If not, the agents pick at random among all of the possible actions that are not
the best. Formally, this can be expressed as such:

π : ai→ P(ai) =

1− ε if Q(ai) = maxa Q(st ,a)

ε/(n−1) otherwise
(7)

The second solution, somewhat more common and more elegant, is to use
Boltzmann’s equation to assign probabilities to each action based on their
current Q-values:

π : ai→ P(ai) =
eQ(s,ai)/τ

∑ j eQ(s,a j)/τ
(8)

In Eq. 8, the 0 < τ < ∞ parameter represents the decision temperature,
and determines the balance between exploration and exploitation. As τ → 0,
the agent becomes more exploitative and greedy, deterministically picking
the action with the highest Q-value; and, as τ → ∞, the agent becomes more
explorative, selecting actions at random.

SARSA

The idea behind TD-learning can be extended to the case of an agent’s
actions. In this case, the agent learns by estimating a value function Q(s,a)
that assigns a value Q to every action a that can be taken in every specific
state s. In a discrete environment, we can imagine the agent maintaining
an internal Q-table, which is analogous to the V -table described above, but

35

contains three columns: one for all states, one for all the actions associated
with each state, and one for the Q value associated with each possible state
and action combination. Again, as in the case of the state values, the agent
learns to approximate the value Q of an action a in a state s as the number of
future rewards that can be expected from now on.

To efficiently learn Q, the agent simply compares different subsequent
estimates. At any point in time, if Q(st ,at) at time t perfectly reflects Rt , then
Q(st+1,at+1) also perfectly reflects Rt+1. But, by definition, Rt = rt + γRt+1

(Eq. 2) so that, in a perfect world:

Qnew(st ,at)← Qold(st ,at)+α [rt + γQ(st+1,at+1)−Qold(st ,at)] (9)

This particular algorithm is known as SARSA 20, from the mnemonic 20 Gavin A Rummery and Mahesan Niranjan.
On-line Q-learning using connectionist sys-
tems, volume 37. University of Cambridge,
Department of Engineering Cambridge, UK,
1994

of the various quantities used in the updated rule (st , at , rt , st+1, at+1, re-
spectively). In this learning rule, the agent is ready to update the entries of
the Q-table as soon it has perceived the new state st+1 and has decided the
following action at+1.

Implementation

An agent that learns to perform actions can be implemented in the same way
as described can be implemented in the same way, with only a few minor
modifications. The first is that, instead randomly choosing actions (as in the
case of Figure 10), the agent will implement an algorithm such as Equations
7 and 8 . The second is that, instead of a lookup table for V values, our agent
would have a Q table with three columns: one that indexes the state, one that
indexes the actions for each state, and one for the Q-values associated with
each action in each state.

Although the agents described in Section I already had actions that al-
lowed it to navigate the maze, we did not provide any definition for them.
Now, we can get into more detail. The simulated mouse agent possesses a set
of four actions, A = {Down,Left,Up,Right}, which are available at every
state and have the consequence of moving the agent to a new cell. The state
transition function is defined as

State s Action a Value Q(s,a)
s1,1 Down 0
s1,1 Left 0
.
s4,4 Right 0

Table 3: An example of a Q-Table.

We can visualize such an example. As in Figure 10, we can visualize the
Q-values as matrices, so that their spatial arrangement is consistent with
the maze. Since we have four different actions, we can visualize the entire
Q-table as four matrices, showing the value of the corresponding action
in each position of the maze. One such result is given in Figure 11, which
illustrates the Q-values for the four actions of an agent who has learned how
to navigate the maze environment using SARSA over 500 different trials
using an ε-greedy policy (with ε = 0.1).

Because the agent is using an ε-greedy policy, none of the four cells
looks resembles the smooth gradients of the V -table in Figure 10. This is

36

because the policy, by selecting the best actions more often, prevents and
even sampling of the space of possible actions, at the limit ensuing that
certain cells, such as (4,4) are seldom, if ever, explored.

Figure 11: Q-Values in the lookup
tables of an agent learning to
navigate the maze of Figure 9

Q-Learning

In his original paper 21, Sutton proved the optimality of TD-learning. So, it 21 Richard S Sutton. Learning to predict
by the methods of temporal differences.
Machine learning, 3(1):9–44, 1988

seems only natural to assume that, if TD-learning is optimal and converges
on the true values of V for every state, that SARSA would the same, and
converge on the true values of Q for every state. However, one should ask, as
Thor did, "is it, though?".

The answer is no, it isn’t. The key is that, in TD-learning, we are estimat-
ing quantities (the V -values associated with each sate) that do not affect, per
se, how state transitions happen. But, in SARSA, the agent is actually trying
to estimate the value of actions, and actions do affect how the environment
changes states. For this reason, the specific way in which the agent chooses
the next action, at+1, affects the eventual values in the Q-table 22. 22 SARSA does, however, other desirable

characteristics; notably, as we will see,
it greatly simplifies the use of eligibility
traces.

This problem is solved by Watkins and Dayan 23 with an algorithm called

23 Christopher JCH Watkins and Peter
Dayan. Q-learning. Machine learning,
8(3-4):279–292, 1992

Q-learning. In Q-learning, the update rule is the following:

Qnew(st ,at)← Qold(st ,at)+α [rt + γ max
a

Q(st+1,at+1)−Qold(st ,at)] (10)

In Eq. 10, the term maxa Q(st+1,at+1) represents the Q-value of the action
with the highest possible value among all of those available in state st+1.
Note that, under this definition, the action with the highest possible value
might not be the action effectively taken by the model.

37

Thus, the key difference between SARSA and Q-learning is the action
that, at the new state st+1, is chosen as the yardstick against which the
previous action’s Q-value is compared, and which will determine the size
and direction of the RPE. In SARSA, the action is simply the next action that
agent has already decided to take. In Q-learning, however, the action is the
best possible action that is available at state st+1, whether the agent takes it or
not. In RL lingo, SARSA is said to be a on-policy learning rule, because its
updates depend on the actions that were effectively taken. Q-learning, on the
other hand, is said to an off-policy learning rule because the agent learns from
the best estimates so far, whether they reflect its behavior or not.

The difference between the results of the two types of learning can be
striking. Let’s consider, as an example, a variation of the original maze
example in Figure 9. In this case, the maze is being modified by adding a
“pit” running in through cells (1,2) and (1,3) in the upper row. To simulate
the nefarious effects of falling in the pit, the states s1,2 and s1,3 have a reward
value of r = −10. Finally, the cheese block is placed right behind the pit, in
cell (1,4).

The difference is illustrated in Figure 12. Each plot in the Figure shows
the probability that each cells is visited during a single trial, after learning
has occurred with either Q-learning (left) or SARSA (right). In this particular
example, both agents were trained for 1,000 trials and both used the same
ε-greedy policy with ε = 0.1.

Because there is a non-zero chance that the model would accidentally take
the “Up” action while running in the horizontal segment of the maze towards
its rewards, SARSA eventually learns to take a longer path, which minimizes
the risks. Q-learning, on the other hand, is insensitive to this risk, and learns
what is effectively the optimal (that is, shortest) path to the reward, even if
the agent might sometimes incur in an accidental cost.

Figure 12: Preferred navigation
paths in the 4 by 4 maze after 1,000
learning trials with Q-learning (left)
or SARSA (right).

SARSA and Q-learning in the Brain

The results of the previous paragraph seem to suggest that a biological
agent should rely on SARSA, rather than Q-learning: although it cannot be
demonstrated to converge on optimal values, SARSA does take the agent’s

38

actual behavior into account and avoids overexposing to potentially choosing
bad actions. But, common sense considerations aside, is this also true of the
brain?

Learning in Non-Markov Environments

A known limitation of the simple version of RL described herein is that it can-
not be applied to non-Markov environments. In non-Markov environments,
the back-propagation of the error term would not work properly, and actions
would not get proper credit for later rewards.

Consider, for example, this simple variation of the environment used by
Redish 24 in his study of addiction. In this environment, rewards at the end, 24 A David Redish. Addiction as a com-

putational process gone awry. Science,
306(5703):1944–1947, 2004

delivered in the two states marked as “Win” and “Loss”, are dependent on the
two possible states, “A” and “B”, that branch out of the initial, “Start” state.

Multiple-step Backups: TD(n) and Q(n)

Perhaps the simplest solution to this problem is to extend the scope of the
update window of the temporal difference algorithms. All of the algorithms
we have seen so far involve a backup term, which updates the values of a state
or an action at time t based on the new values at times t + 1. This backup term
creates a sort of chain rule, which propagates the RPE term δt back in time.

There is nothing that prevents us from using a larger window, and updating
the values at time t based on the experiences at time t + 2, for example.

Eligibility Traces

The typical solution to this problem is to augment the RL agent with a
form of internal “memory” of its previous states. The memory of a state s
is represented as an eligibility trace e(s). Initially, each trace is set to zero.
Then, every time the agent enters a new state s′, each of the eligibility traces
in memory are updated according to the following rule

e(s) =

λe(s) if s′ 6= s

λe(s)+ 1 otherwise
(11)

in which 0 < λ < 1 is a decay parameter. Thus, eligibility traces decay over
time but increase with re-use, roughly capturing the role of recency and fre-
quency in memory. The eligibility traces can be used to bridge the temporal
gap that separates an action from its temporally delayed consequences in a
non-Markov environments.

TD-learning with Eligibility Traces: TD(λ)

The eligibility traces can be easily integrated into TD-learning, creating a
variant known as TD(λ). In TD(λ), the original TD-learning algorithm is

39

modified as follows. After all of the eligibility traces in memory have been
updated, all of the V (s) values for all states are also updated in proportion to
the value of of the corresponding eligibility trace.

Vnew(s)←Vold(s)+αδte(s) (12)

The key aspect of Equation 12 is that, once a δt value is calculated by
comparing predicted and observed values of a state, the prediction error is
propagated back in time to all states in proportion to their distance in time,
which is embodied by the e(s) term. In other words, TD(λ) can be seen as
a version of TD(n) with “fading” memories, where the size of the backup
terms decays with the temporal distance. In, fact, we can think of TD(λ) as
a generalization of TD(n): When λ = 0, TD(λ) reduces to TD-learning, or
TD(n = 1). When λ = 1, on the other hand, TD(λ) approximates TD(n→ ∞).

Implementation

To implement a TD(λ) agent, we just need to modify the existing TD-agents
in three ways. First, in addition to the existing lookup table for V values, we
need to add an E-table that associates each state state with the current value
of its eligibility trace. At the beginning, all of the entries of the E-table are
zero. Second, the learning rule needs to be modified so that, when a new
state s′ is perceived, all of the entries in the E table are updated according
to Equation 11. Third, once E is updated, all of the values of the V table are
updated according to Equation 12.

Figure 13: V -tables of an agent
learning a non-Markov envi-
ronment using the standard TD-
learning algorithm (left) or TD(λ)
(right). The latter can successfully
recovery the long-distance depen-
dency between the rewards in the
“win” and “loss” states and the
earlier “A” and “B” states.

We can also examine how eligibility traces are applied in the case of the
TD-learning agent navigating the grid maze and described in Section I. In this
case, the agent performs a random walk at every trial, and the states represent
the cells visited in its path. Let us imagine an agent that, starting in the usual
location in cell (1,1), performs the following series of moves:

Eligibility Traces for Actions

What happens in the case of methods that estimate the values of actions, such
a Q-learning and SARSA? In the case of SARSA, translating TD(λ) is trivial.

40

Figure 14: A 20-step random walk
of a agent moving in the maze envi-
ronment until it finds the reward

To do so, we first modify the definition of eligibility trace, from a decaying
memory of visiting a given state, e(s), to a decaying memory of performing a
specific action in a given state, e(s,a). Then, we modify Equation 9 along the
lines of Equation 12, obtaining what is known as SARSA(λ):

Qnew(s,a)← Qold(s,a)+αδte(s,a) (13)

But what about Q-learning? As it turns out, such a straightforward trans-
formation is not possible. This is because in Q-learning (Equation 10) the
backup term is based on the best action available maxa Q(st+1,at+1), which
might or might not be executed at time t + 1. However, if the best action is not
chosen, how should its eligibility trace be updated? Should it be increased by
one, because it was still considered? Or should the eligibility trace decrease,
because it was not actually executed and experienced?

These problems were actually noticed as soon as Q-learning was presented
25. To solve this problem, Watkins and Dayan proposed a mixed strategy, 25 Christopher JCH Watkins and Peter

Dayan. Q-learning. Machine learning,
8(3-4):279–292, 1992

which they called Q(λ) and in which the use of the eligibility traces depends
on the policy π . In this strategy, the model follows SARSA(λ)’s rule in
Equation 13 so long as the action picked by model is also the best action in
Q-learning’s algorithm, that is, as long as Q(st+1,at+1) = maxa Q(st+1,a).
However, when the policy selects an action that is not the optimal action,
Q(λ) resets all the eligibility traces to zero. Because the current state st’s

41

.

Figure 15: Timecourse of the eligi-
bility traces as the agent walks in
the path of Figure 14

eligibility trace still gets incremented by 1 (as in Equation 11) and all the
other traces are now zero, the learning algorithm reduces to Q-learning for
this trial. In practice, this algorithm uses SARSA(λ) as long as there is an
uninterrupted sequence of optimal actions, and resets itself, starting a new set
of traces, whenever the policy deviates from optimal.

Learning the Policy With Actor-Critic Methods

So far, our agents have maintained three separate components: A V -table for
states, a Q-table for actions, and a policy. The distinction between the policy
and the Q-table, however, is somewhat blurred; as we have seen, certain
algorithm, like SARSA, will find different solutions based on the policy
that is actually being used (see Figure 12). Furthermore, most reasonable
policies would depend on the values of actions, as is the case for the policies
described in Equations 7 and 8.

Intuitively, it does not make much sense to keep the policy entirely sepa-
rated from what an agent learns about the value of its own actions, although
it might be conceptually cleaner from a computational standpoint. If we con-
sider biological agents, the distinction is even less sensible, as it is clearly the
agent’s objective to quickly learn how to act in a given environment and how
to avoid making mistakes. or this reason, scientists have researched ways in
which RL agents can be simplified and their policy could be learned together
with the value of their actions.

The result of this line of research has been a series of algorithms known
as Actor-Critic Methods. In these algorithms, the RL agent is divided into
components: an Actor that chooses the actions to perform in a given state
and a Critic that uses RL methods to learn the values of different actions in
an environment. Thus, Actor implements the policy function, and the Critic

42

provides feedback to the Actor’s choices. This way, AC agents use what they
have learned to directly update the policy.

The Advantage Actor-Critic (A2C)

.
Although the Q Critic unifies the Q-table and the policy, it remains an

agent that learns the values of states and actions separately. That is certainly
convenient from an engineering point of view; depending on the specifics
of the environment we are facing, we can choose whether to compute V -
functions and tables (when, for instance, we are interested in states and
have little power over the environment) or Q-functions and tables (when, for
instance, we have much more control over what we do).

But living creatures have no such luxury. They do not get to choose
the environment they live in; if they do, they do not get to neatly pick the
best way to design their own brain to select the most convenient algorithm;
and, even if they were to do so, they would not have the comfort of a well
designed and characterized environment, one for which there is a good
solution that would remain constant across their lifespan.

As a consequence, researchers have been investigating whether there is
a way to unify the ideas behind state- and action-based temporal difference
methods, so that agents would not need to learn separate V and Q tables and
perform redundant learning steps after perceiving any new state.

The Advantage Actor-Critic (A2C) architecture is perhaps the most
intuitive way to implement an Actor-Critic. Instead of a Q-function, the A2C
agent learns a so-called Advantage function, which is defined as such:

A(s,a) = V (s)−Q(s,a) (14)

In practice, the advantage of an action a in state s is how much it can
improve over the standard expectations for that state, V (s). The expectations
for V (s) depend on the policy.

The key advantage of the A2C architecture is that we can now update
A(s,a) after observing the next state and its value, V (st+1). Therefore, we
can use the TD-learning equation 6 to calculate δt , and use δt to update
A(s,a):

A(st ,at)new = A(st ,at)old +βδt (15)

Notice the massive simplification carried out in the A2C agent. Instead
of keeping track of multiple tables and policies, the A2C agent can be imple-
mented with minimal use of memory resources. All that this agent needs is
a V -table to keep track of the states, and an implementation of TD-learning
to update expectations. The policy can be implemented directly by keeping
track of a series of state-action associations that are directly updated when-
ever δt is calculated. Once implemented the agent can be easily deployed in

43

both Pavolvian and instrumental conditioning situations without any chance
to the architecture.

The Actor-Critic Framework in the Brain

At this point, it should come at not surprise that Actor-Critic agents, and
A2C in particular, bear a strong resemblance to the architecture of the basal
ganglia, and in particular of the basal ganglia’s central nucleus, the striatum
26. The striatum is made of two different components, the ventral striatum, 26 Andrew G Barto. Adaptive critics and

the basal ganglia. Models of information
processing in the basal ganglia, 215, 1995

also known as nucleus accumbens, and the dorsal striatum. Both components
receive inputs from large portions of the cortex; however, the ventral part
receives dopamine inputs from the VTA, and the dorsal part projects back to
the motor cortex.

In fact, the architecture of the basal ganglia circuit bears a remarkable
similarity to the design of the A2C critic 27. 27 Yuji Takahashi, Geoffrey Schoenbaum,

and Yael Niv. Silencing the critics: under-
standing the effects of cocaine sensitization
on dorsolateral and ventral striatum in the
context of an actor/critic model. Frontiers in
neuroscience, 2:14, 2008

Model-Based RL

All of the methods that have been described so far belong to a specific form
of RL called model-free. It is called as such because the agent does not have
to maintain (i.e., it is “free” from) an internal model of the environment to act
properly in the world. Unsurprisingly, these models require remarkably little
in terms of computations and memory, and they provide a nice framework
to explain the function of those brain circuits that, through repeated rewards,
form habits and stimulus-response associations, such the basal ganglia 28. 28 Henry H Yin and Barbara J Knowlton. The

role of the basal ganglia in habit formation.
Nature Reviews Neuroscience, 7(6):464–476,
2006

Also unsurprisingly, model-free RL is fairly limited and, being habitual by
nature, it is also inflexible. Suppose, for instance, that our imaginary mouse
is placed again in the maze that has been used in the previous examples–only,
this time, the mouse is not hungry. Following RL, the mouse would find
itself drawn to the cheese location, whether it has any desire to eat cheese
or not. And, if the mouse is thirsty, its previously learned Q-values would
be essentially useless, as they would keep directing the animal towards the
cheese but provide no clue as to where to find water.

To overcome these difficulties, a smart agent needs to able to understand
and predict the how the environment would change. This, in turn, require
forming an internal model. In formal terms, this internal model is a represen-
tation of the environment’s state transition function P(st ,at ,st+1).

In our simplified and discrete domain, we will assume that the agent uses
yet another table, which we will call the S-table. The S-table contains four
columns. Like the Q-table, the first two columns represent the current state
st and action at , and will be used to identify the correct row. The last two
columns store the new state st+1 and the associated reward rt+1:

State st Action at Reward rt+1 State st+1

s1,1 Right 0 s1,2
s1,1 Down 0 s2,1
.
s2,3 Down 1 s3,3
.

Table 4: An example of S-Table:
Combinations of states and actions
are associated with the consecutive
state and associated reward.

44

One-step Q-planning

Perhaps the simplest model-based RL algorithm is the so-called one-step
Q-planning. In this algorithm, it is assumed that agent is equipped with
a policy pi on how to choose actions based on their Q values, but has not
learned the values of any action yet (that is, the Q tables are empty). The
agent, however, does have a model of the environment (an S-table) to start
with. Such a situation could arise, for example, when an agent is not acting
in a particular environment but is allowed to witness another agent’s actions,
thus acquiring knowledge about state transitions without ever experiencing
the consequences of their actions.

In this situation, the agent needs to transfer its knowledge from the S-table
to the Q-table before being able to apply its policy. To do so, the algorithm
performs a sort of mental simulation: it will vicariously experience the effects
of the actions by repeatedly selecting a random state s and a random action
a associated with it from the list of possible states it has learned, and using
its S-table to simulate the consequences of a. After looking up the following
st+1 and reward rt+1, the agent can then apply Q-learning and update its own
Q-tables. Because this process only requires looking up entries in the agent’s
memory, it can be repeated for a very large number of times, always with
a new random state and action, resulting in Q-learning to converge. In fact,
because the states are chosen at random, the agent can sample all the possible
combinations of states and actions during the planning phase, generating
a better coverage of the values of actions in every part of the maze. As an
example, Figure 16 shows the Q-table of a one-step Q-planning agent after
the first planning step. Note how different the Q-table looks from the one in
Figure 11. When the planning step is completed, the agent can finally use its
policy π to act in an environment that it has never experienced directly.

Note that “planning”, in this sense, is not necessarily the formulation of a
chain of steps that the agent will follow. Rather, it is the repeated simulation
of events that allow the knowledge encapsulated in the S-table to transfer
to the Q-table. Similarly, the “one-step” part of the algorithm might require
many thousand cycles of simulation from this transfer to take place; it can
be considered as a single step only because it does not involve any physical
action with the environment, and can be entirely contained between the
moment in which a new state is perceived and the moment at which a new
action is selected.

The flexibility of model-based RL stems from the fact that, if the envi-
ronment were to suddenly change, or if the agent were to change its goals
and decide that, for example, cheese is not as much a reward as water, the
agent would only need to change the entries in the S-table and, in a single
iteration of one-step Q-planning, would be able to relearn an entirely differ-
ent set of Q-tables that would be better suited for the new goals or the new
environment.

45

.

Figure 16: Q-table of a model-
based agent implementing a
one-step Q-planning algorithm with
n = 1,000 simulation steps. Before
the first move, the agent has precise
knowledge of the exact value of
each action in each state

Dyna-Q

The situation described above is highly unusual, as the agent has access to
complete model-based knowledge before being required to perform any
action in the environment. A much more likely case is one in which the
agent is tossed into a new environment, and the agent is left with learning
both model-based and model-free representations—that is, it starts with
uninitialized or empty S-tables and Q-tables. In this case, the most common
solution is an algorithm known as Dyna-Q 29. 29 Richard S Sutton. Integrated architectures

for learning, planning, and reacting based on
approximating dynamic programming. In
Machine learning proceedings 1990, pages
216–224. Elsevier, 1990

In Dyna-Q, the agent starts by performing the planning step through
one-step Q-planning. That is, the agent first updates its own Q-tables based
on the existent model of the environment, if any. If the model is empty, the
agent imply picks at random. Either way, this first step results in an action at

being chosen and executed. The execution of at results in the environment
undergoing a state transition, upon which the agent perceives a new state
st+1 and a new reward rt+1. The new state and reward to used to perform
two updates: First, it is used to update the agent’s Q-tables; second, it is used
to update the agent’s model of the environment and its S-table. Thus, after
every action, the agent updates both the model-based and the model-free
representations.

By leveraging both model-free (Q-tables) and model-based (S-tables) at
the same time, Dyna-Q is usually much faster and more efficient than any
model-free algorithm. The image below the path taken by an agent learning
with Dyna-Q (top row) and by Q-learning (bottom row) at times t = 1,10,20.
Both models have the same model-free parameters (α = 0.1, γ = 0.9). It is
apparent that Dyna-Q learns much faster.

46

.

Figure 17: A comparison of Dyna-
Q and Q-learning as an agent learns
to navigate the maze of Figure 9

Model-Based RL as Declarative Memory

From the neuroscientific point of view, it is interesting to consider Model-
Based RL as another way in which RL can be complemented by declarative
memory, akin to the case of eligibility traces in Section I. In fact, a specific
connection can be again made to the old animal learning literature. A lengthy
debate that spanned centuries was whether animals who were trained to
perform a particular task in the lab were actually learning “stimulus-response”
(S-R) or “stimulus-stimulus” (S-S) associations. From the point of view of
RL, S-R associations can be easily identified with the Q-function and the
Q-table (which maps a state-action pair onto its estimated cumulative reward),
while an S-S association corresponds to the state transition function and the
S-table of model-based RL. Thus, it is apparent that animals can do both, and
can learn either representation.

This was famously shown by Edward Tolman in a series of experiments
in the ’30s. Perhaps the most famous of these experiments was one in which
Tolman and colleagues trained three groups of rats to perform a maze 30. 30 Edward C Tolman. Cognitive maps in rats

and men. Psychological review, 55(4):189,
1948

Each animal was put at one end of the maze, and was taken out when they
reached the opposite end of the maze. For animals in the first group (“R” for
“Reward”), a food pellet was placed at the end of the maze. Animals in the
second group, instead, were not given any reward (“NR”, for “No Reward”,
in Figure 18).

Unsurprisingly, Tolman found that animals in the first group learned faster
than animals in the second group. As a learning measure, they recorded the
number of “errors” that animals made during a trial, i.e. the number of turns
they made that were not along the shortest path to the food reward. As shown
in Figure 18, the first group shows a much sharper drop of errors over time
than the second31. 31 In case you are wondering why the NR

rats also show learning... Keep in mind that
getting out of a lab experiment is rewarding
as well, especially if there is no food at the
end!

A third group of rats, however, began receiving the reward only at the 11th
day of training (NR-R in Figure 18, for “No Reward - Reward”). Surprisingly,

47

Figure 18: Results from Tolman’s
original experiment demonstrating
the existence of “cognitive maps”

Tolman reported that, from that moment on, these rats performed exactly
as well as the rats who had been receiving the rewards since Day 1; in fact,
they even slightly outperformed that group. Tolman concluded that, whatever
learning was going on in this third group, must have occurred in the first 10
days and at the same rate as the first group, even in absence of rewards and
overt behavior. He specifically put forward an hypothesis that was hugely
controversial at that time—that rats were actually learning “cognitive maps”.

Of course, that was exactly what the rats were learning.

Model-Based RL as Planning

Although classic studies like Tolman’s 32 showed that animals can learn 32 Edward C Tolman. Cognitive maps in rats
and men. Psychological review, 55(4):189,
1948

S-S associations that are, in essence, analogous to the entries of our agent’s
S-table, they say nothing about how these representations are ultimately used
by an agent. In the process of deriving new Q-tables, the agent engages in a
repeated simulation of outcomes that are encoded in declarative memory.

However, another way in which the agent can decide how to act is by
carefully examining all of the possible outcomes of a choice in its own
head before making a move. This process is called planning, and requires a
considerable amount of resources in terms of both episodic memory (to build
the S-table and remember the states) and in terms of working memory (to
build and maintain a tree of possible options).

Accumulator Models of Decision-Making

Reinforcement learning models describe how agents learn from their en-
vironments and make decisions. However, while the learning aspects of
Reinforcement Learning have been examined in details and mapped to spe-
cific aspects of brain function, the neural underpinnings of their decision part
has been overlooked. In essence, RL agents delegate the decision to “policy”
that works like an oracle: given a state, the policy would return the action to
perform. But how is such a decision exactly made? Unlike the detailed mech-
anisms by which V and Q tables are updated, RL models are silent about the
mechanics of decision making.

And yet, decision-making is such an important aspect of cognition that
it cannot be ignored. In addition to choosing between alternative actions,
organisms face decisions across of a variety of other circumstances, such as
deciding which of two pieces of food is bigger, or even, simply, whether a
particular object is predator or not.

Fortunately, a specific family of models exists that have been designed
specifically to capture and account for the dynamics of decision-making.
These models, which exist in many variations, are collectively referred to as
accumulator models; they are also known, in other fields, as diffusion models
or sequential sampling models.

Accumulator models are based on the idea that the decisions process
unfolds over a period of time. In that period, evidence in favor of one or
more options is accumulated. A decision is made as soon as the evidence
for one option exceeds a predefined amount. There are two main families of
accumulator models: diffusion models and race models.

The Drift Diffusion Model

The first category of accumulator models we are going to see is called
Diffusion models. These models were designed the handle what is perhaps
the most prototypical case of decision-making–the case in which there are
only two options, and the decided must choose one of them. This situation is
technically known as a "two-alternative forced choice task", or 2AFC.

The simplest paradigm in this sense was popularized by Ratcliff 33, and 33 Roger Ratcliff. A theory of memory
retrieval. Psychological review, 85(2):59,
1978

has become known as the “Drift-Diffusion Model” or DDM.

50

As in all accumulator models, in DDMs a decision is made by accumulat-
ing evidence over time towards one of two. Specifically, a DDM has at least
three parameters:

• The drift rate v. This is crucial parameter in a DDM. The drift parameter
captures the degree to which evidence moves, on average, towards one
option or the other.

• The decision boundary A. By convention one of the two options is associ-
ated with the value of zero while the other is associated with the boundary
A > 0. The models begins its meandering drift at the value in between the
two options, that is, A/2.

• The non-decision time Ter. Although the model is designed to model the
time it takes to make a decision, in real experiments the response time
include other factors that have nothing to do with the decision process per
se, such as the time necessary to move the eyes and fixate a stimulus or
the time to initiate and button press. All of these factors are assumed to be
constant across a single experiment, and compounded into a single factor
that accounts for the “non-decision time”. This parameter is called Ter
(from its original name, “Time for Encoding and Response”).

In Ratcliff’s original formulation 34, the drift-diffusion model is continu- 34 Roger Ratcliff. A theory of memory
retrieval. Psychological review, 85(2):59,
1978

ous and the drift rate can be understood as a force vector constantly applied to
a moving particle. This approach leads to very elegant but complicated math.
In most applications, the model is simplified as discrete, with accumulation of
evidence occurring at small, discrete steps over time and in fixed increments
towards one of the two options. In the discrete case, the drift rate v is inter-
preted as the probability that, in a given time increment, the evidence will
accumulate towards the boundary A. Thus, the drift value is constrained to
be 0 <= v <= 1, the value of v = 0.5 represents indifference between the
two options, and any value v > 0.5 indicates a preferences towards the option
associated with the boundary A.

Note that this model makes a lot of predictions. If simulated for a suffi-
cient number of times, the model predicts not only the probabilities that each
option will be chosen, but also the distribution of the response times associ-
ated with them. This abundance of behavioral predictions has made DDMs a
favorite in the field of cognitive psychology, where they have become one of
the dominant frameworks. Figure 19 illustrates an example such model, with
parameters A = 1, v = 0.54, and Ter = 1 (one second).

What Are The Two “Options”?

So far, I have been intentionally cagey about what we intend as the model’s
options.

51

Figure 19: Ratcliff’s Drift Diffu-
sion Model

Consider, for example, what has been perhaps the most experimental
paradigm to which this model has been applied, the motion coherence
detection. In this type of paradigm, participants are presented with an array
of moving dots. All of dots are moving and at the same speed, but the degree
to which they are moving in the same direction changes across conditions.
Figure 20 illustrates three hypothetical cases in which 0%, 50%, or 100%
of the dots are moving to the right. The direction of the coherent motion is
not given to participants beforehand; on some trials, the coherent motion
might be towards the left and, in other trials, towards the right. Participants
are typically instructed to indicate the direction of coherent motion with
the left or the right hand. In cases in which this paradigm was carried out in
non-human primates, the animals typically respond by performing a saccade,
i.e., by moving the eyes in the intended location.

Figure 20: Example stimuli from a
motion coherence paradigm

In this paradigm, the degree of motion coherence clearly maps to the drift
rate v. But what are the two responses? Intuitively, the answer seems straight-
forward: the two responses are left and right. But there are other ways to

52

think about this. If an experimenter is interested in studying hand dominance,
for example, they might decide to code the response that corresponds to the
dominant hand of each participant as A, and the response that corresponds
to the non-dominant hand as 0. So, A could be either left or right, depending
on the self-attested preferences of the individual. In what is perhaps the most
common case with DDMs, an experimenter might be interested in the differ-
ence between correct and incorrect answers, and would code all the correct
answers as A, and all of the incorrect answers as 0, independently of whether
they were right or wrong.

Note that the interpretation of the other parameters also changes as an ef-
fect of this decision. If the responses were coded as left vs. right, a response
bias parameter z could be easily interpreted as an effect of hand dominance,
and a drift rate v could be interpreted as a greater ease to distinguish move-
ment in the dominant hemifield. But, if the two responses were coded as
correct vs. incorrect, the interpretation would be different, and v would likely
be considered as a measure of the subjective ease of the decision and z as
some facilitatory effect—for example, the effect of a visual cue that warns of
the direction of motion 35. 35 Martijn J Mulder, Eric-Jan Wagenmakers,

Roger Ratcliff, Wouter Boekel, and Birte U
Forstmann. Bias in the brain: a diffusion
model analysis of prior probability and
potential payoff. Journal of Neuroscience,
32(7):2335–2343, 2012

The Speed-Accuracy Trade-Off

The three parameters of the model, v, A, and Ter, reflect different character-
istics. The drift rate v is supposed to reflect the characteristics of the stimuli
that we are trying to capture.

One of the noteworthy characteristics of this model is that it provides
an elegant, built-in explanation for the speed-accuracy trade-off. This is
a well-know effect in psychology whereby an individual’s accuracy in a
decision-making task36 is inversely proportional to their speed. In other 36 And, probably, in every task

words, one could either be fast and imprecise, or slow and precise.
We have seen an example of this tradeoff in the first notebook: it is

explicitely embedded in Fitts’ model of response times. In that model,
however, the speed-accuracy trade-off was directly encoded in the equations.
In Ratcliff’s DDM model, instead, the speed-accuracy tradeoff comes into
being as a side effect of adjusting the decision boundary A. Given a certain
drift rate v (which is a property of a stimulus), a decision maker can adjust
the decision boundary and either choose to accumulate a lot of evidence
before making a decision (being more precise but slower) or choose to
lower the threshold so that a decision can be made earlier, but based on less
evidence. In other words, the speed-accuracy tradeoff exists because evidence
accumulation is noisy and outside the control of the decision-maker, and
the only way to be more precise is to accumulate more evidence, which
necessarily takes time.

53

Figure 21: Speed accuracy trade-
off in DDMs. Left: A model with
high decision threshold will be
most accurate but take a longer
time to decide. Right: By lowering
the decision threshold, responses
can be made more quickly, but
the number of errors is going to
increase

The Response Bias z

One of the assumptions of the DDM model, as described here, is that the
two options are equivalent except for the relative evidence in favor of one of
them—a factor captured by the parameter v. If there is no evidence in favor
of either option, the model predicts that both options will be chosen equally
frequently and with similar distributions of response times.

Figure 22: Compared to a canon-
ical DDM with neural starting
point (Left), a DDM with an initial
response bias z is more likely and
faster at reaching the boundary that
is closer to the starting point Right

In a study 37, it was found that response biases were affected by prior 37 Martijn J Mulder, Eric-Jan Wagenmakers,
Roger Ratcliff, Wouter Boekel, and Birte U
Forstmann. Bias in the brain: a diffusion
model analysis of prior probability and
potential payoff. Journal of Neuroscience,
32(7):2335–2343, 2012

knowledge of the task.

Modeling Errors

We have seen above that Ratcliff’s model is commonly applied by coding
the two options as the correct and incorrect response to a given stimulus,

54

independently of the response. In this case, the drift parameter can be easily
understood as a measure of decision difficulty: the easier it is to make a
decision, the quicker the response times and the more likely the correct
response is to be selected.

One noteworthy limitation of this approach, however, is that errors, in hu-
man experiments (and likely in primate experiments as well) exhibit different
distributions of response times. The nature of this difference depends a bit on
the task. When the experiment stresses quick response times.

These apparently complicated pattern can be captured by adding another
source of inter-trial variability to the model—specifically, by making the drift
rate vary randomly across trials. In this case, the drift rate is not constant
across trials, but is drawn from a normal distribution with mean µv and
standard deviation σv: v∼N (µv,σv)

Relationship between Accumulator Models and RL

It can be shown mathematically that, in Ratcliff’s model, and that the proba-
bility P(A) of crossing the boundary A can be computed as:

P(A) =
1

1+ e−2v×A (16)

This provides us with an interesting connection to RL. As noticed above,
one of the most common policies in RL is the Boltzmann policy, whereby a
particular action a is chosen over all the other competitors using the follow-
ing equation:

P(ai) =
eQ(s,ai)/τ

∑ j eQ(s,a j)/τ

where τ is the decision temperature parameter. In the case of two options,
a1 and a2, this expression reduces to:

P(a1) =
eQ(a1)/τ

eQ(a1)/τ + eQ(a2)/τ

=
eQ(a1)/τ

eQ(a1)/τ × (1+[eQ(a2)/τ /eQ(a1)/τ])

=
1

1+ eQ(a2)/τ /eQ(a1)/τ

=
1

1+ eQ(a2)/τ−Q(a1)/τ

=
1

1+ e−∆Q/τ
(17)

where ∆Q = Q(a1)−Q(a2) is the difference in the Q values of the two
actions.

55

The two equations 16 and 17 are clearly similar, and become the same if
we assume that v = ∆Q/2 and A = 1/τ . These identifications are reasonable.
In DDM, the drift rate v supposedly reflects the ease of the discrimination
between the two options; in the case of two actions, larger differences in
perceived values should also facilitate the decision in favor of the better
options. Similarly, and as noted above, as the boundary A increase, the
decision process becomes increasingly more likely to converge on the correct
response, exactly as the Boltzmann policy becomes more likely to converge
on the best option when as the temperature τ drops.

In fact, models like DDM are often used as a back-end to generate realistic
response times for RL agents or other types of models that compute values
for decision: These values are then passed to an accumulator model that
generates the predicted number of choices and the corresponding response
time distributions (e.g., 38). 38 Sebastian Musslick, Amitai Shenhav,

Matthew M Botvinick, and Jonathan D
Cohen. A computational model of control
allocation based on the expected value
of control. In The 2nd multidisciplinary
conference on reinforcement learning and
decision making, 2015

Race Models

So far, we have seen models in which a binary choice needs to be made and
evidence accumulates in favor or against that choice. But what happens if we
have more than two choices? As noticed above, classic accumulator models
do not work beyond 2AFC tasks.

One simple solution would be to divide the options across multiple ac-
cumulator models. This can be done easily through the use of race models.
Race models are a category of accumulator models that have only one possi-
ble option. In the case of multiple alternatives, a different model is created for
each possible options. Unlike DDMs, in which evidence for one alternative
also counts against the other alternative, in race models evidence is accumu-
lated independently for each option. A response as soon as the evidence cross
the decision threshold in one accumulator. This is the reason these models
are called “race” models: All accumulators are competing with each other
by independently gathering evidence, and the first one to cross the threshold
wins the race.

The Linear Ballistic Accumulator Model

The best-known example of race model is the Linear Ballistic Accumulator
model 39, or LBA. The functioning of this model is illustrated in Figure 23. 39 Scott D Brown and Andrew Heathcote.

The simplest complete model of choice
response time: Linear ballistic accumulation.
Cognitive psychology, 57(3):153–178, 2008

Unlike DDM, in LBA the evidence accrus at a fixed rate throughout the trials,
hence the name “ballistic”. Thus, once the trial starts, the evidence grows
linearly moves along the the same path. This is why these type of modes
are sometimes referred to as a “random ray” model 40, as opposed to the 40 Adam Reeves, Nayantara Santhi, and

Stefano DeCaro. A random-ray model for
visual search and object recognition. Spatial
Vision, 18:73–83, 2005

“random walk” trial dynamics of DDM (Figure 19). Because of its nature,
it is possible to calculate exactly the time t at which evidence will cross the
decision boundary for each trial using trigonometry: t = Ter+A/ tan(v)

56

The only source of variability in the LBA is the variability in the drift
parameter v. To create inter-trial variability, the drift rate is sampled from
a Gaussian distribution, as in DDM: v ∼N (µv,σv). Notice that, while in
DDM this is an additional mechanism that is added to the natural variability
of trials, in LBA this is a necessary source of variability because each trial is
ballistic; without variability in v, all trials will be the same.

Another source of variability in LBA the starting point k, which is sampled
from a uniform distribution between 0 and a maximum value m ≤ A, i.e.
k ∼U (0,m).

Figure 23: Brown and Heathcote’s
Linear Ballistic Accumulator
model

To simulate a decision between options,

Models of Long-Term Memory

A Bayesian approach to memory

Long-term memory is the ability to retain information over long-periods of
time. Neuroscientists distinguish between procedural memory, or memory
for habits, and memory, or memory for facts and events 41. Model-free 41 Larry R Squire. Memory systems of the

brain: a brief history and current perspective.
Neurobiology of learning and memory,
82(3):171–177, 2004

reinforcement learning, for example, is an excellent framework to understand
procedural memory. In this chapter, instead, we will examine explanatory
models of declarative memory.

Much like Reinforcement Learning can be seen as an adaptive mecha-
nisms to optimally solve the problem of maximizing future rewards, so many
declarative memory frameworks see memory as an adaptive mechanism to
solve to problem of optimally retrieving information, given the statistics of
the environment. In fact, this problem has been likened to other information-
retrieval problems, such as the problem of predicting book rentals in a public
library 42. This is, in turn, a statistical inference problem, and can be formal- 42 John R Anderson and Robert Milson.

Human memory: An adaptive perspective.
Psychological Review, 96(4):703, 1989

ized using a Bayesian approach.

Bayes’ Theorem

Bayesian approaches are based on Bayes’ theorem, a mathematical tool to
calculate probabilities of events given the context in which they appear.

The bases of Bayes’ theorem are easy to explain. Consider two events, A
and B. As it is usual in probability theory, they can be represented as areas
in a universe of possibile events. In Figure 24, the red area represents all the
cases in which A happen, while the blue area represents all the cases in which
B happens. The purple area in-between is the probability that both A and B
occur at the same time.

Figure 24: Visual illustration of the
probabilities of two events, A and B,
in the space of possible events

P(A)

P(B)

P(A&B)
The probabilities of A and B, denoted as P(A) and P(B), are the pro-

portion of the white rectangle that is covered by the red and blue areas
respectively. The purple overlap area is the area in which both A and B occur
is the probability of their joint occurrence, that is, P(A&B).

The key to understanding Bayes theorem is that all of these values can be
expressed in relation to each other. To this end, Bayes introduced a special
notation that denotes conditional probabilities. For example, P(A|B), that is,

58

the probability of of A given B, is the proportion of the purple area (where
both A and B occur) that is part of the blue area (where B occurs, with or
without A). The same area can also be expressed as P(B|A), that is, the area
in which B within the area in which A occurs. Thus, we can write:

P(A&B) = P(A|B)×P(B)

P(A&B) = P(B|A)×P(A)

It follows that P(A|B)×P(B) = P(B|A)×P(A), and therefore:

P(A|B) = P(A)×P(B|A)
P(B

(18)

These quantities are given special names in reference to event A. The term
P(A|B) is called the posterior probability of A; the expression “posterior”
indicates that this is what we know about the probability of A after we
have learned that B is true. Similarly, the quantity P(A) is called the prior
probability of A; this name indicates that this is the what we know about
A before having any other information. The quantity P(B|A) is called the
likelihood of A. Finally, the term P(B) is called the marginal probability; it is
the probability of the other events that are not A.

What Bayes theorem states is that, once we know B, we can get an a better
and more accurate idea of how likely A is to happen by combining our prior
knowledge of A with our knowledge of B and our knowledge of how A and B
are related.

The Rational Analysis Framework

Bayes theorem become the bases for the so-called rational analysis approach
to memory [25]. In Bayesian approaches to cognition, an agent is considered
as an “ideal observer” with limitless access to information and no cost in
retrieving. This is, obviously, a grand simplification, but it offers some
advantages. Under these circumstances, it is becomes possible to formalize
memory as a problem about the statistics of the environment, rather than a
problem of the mechanics of the agents.

But what is the “problem” that memory has evolved to solve? It is as-
sumed that long-term has evolved to make information available at a later
time if it were needed. For instance, a squirrel would need to remember the
place where it buried a nut as well as the location where it was almost killed
by a hawk. These two pieces of information might be needed in different con-
text: it is important to remember where the nut is buried when the squirrel is
hungry, and it is important to remember where the hawk hunts when looking
for a place to hide a new nut. The availability of a memory, thefore, should
adaptively reflect its probability of being needed in a certain context. Thus,
if we indicate the specific memory as m and the current context as Q (com-
posed of different elemental cues q1,q2, . . .qn) a memory retention function

59

reflects the logarithm of the posterior odds P(m|Q)/P(¬m|Q), which can be
expressed, per Bayes’ theorem, as the product of prior odds P(m)/P(¬m)

and likelihood P(Q|m)/P(Q|¬m). Assuming, for simplicity, that each cue q
is independent from each other, we can simplify this expression as

P(m|Q)

P(¬m|Q)
=

P(m)

P(¬m)

P(Q|m)

P(Q|¬m)

=
P(m)

P(¬m)
)×∏

q

P(q|m)

P(q|¬m)

=
P(m)

P(¬m)
)×∏

q

P(q|m)

P(q)
(19)

The last step in Eq. 19 is an approximation derived from the consideration
that, for large numbers of memories, P(q|¬m) ≈ P(q).

The terms in Eq. 19 have a straightforward explanation in terms of the
cognitive psychology of memory [26, 25, 27, 28]. Specifically, the log prior
odds capturing the effects of the previous history of usage of m and the
log-likelihood corresponding to the effects of contextual cues in memory
retrieval.

A Formal Model of Prior Probabilities

Many models have tried to capture the mechanism by which prior probabili-
ties change over time.

What is the shape of forgetting?

In general, it is intuitive that time is a part of the prior probability of retriev-
ing a memory. The more time passes without retrieving a particular fact,
the more we can assume that it is not gonna be needed in the future. As an
example, consider the results from perhaps the first systematic test of human
memory: Ebbinghaus’ own test data, first described in 1885 43 (Figure 25). 43 Hermann Ebbinghaus. Über das gedächt-

nis: untersuchungen zur experimentellen
psychologie. Duncker & Humblot, 1885

Figure 25: Ebbinghaus’ classic
results

Ebbinghaus conducted a series of experiments creating random lists
of non-sensical syllables. Instead of measuring probabilities of recall, he
calculated how many times it took him to memorize the list well enough to
repeat it perfectly. He then restudied the list after letting different intervals
of time pass by, and recorded how many times he had to restudy it to recite
it perfectly again. The effect of forgetting was measured by calculating the
the percent difference between the first and the second number of attempts,
which he termed percent savings. Perfect recall, in which a person does not
need to restudy the list, corresponds to 100% savings, while having to restudy
the list the same amount of times (or more) corresponds to 0% savings.

Figure 25 plots Ebbinghaus’ percent savings across different intervals,
from 15 minutes to one full month. The effect of time on memory is visible
as a decay effect.

60

But how exactly does time affect memory? One possibility is that the
effect of time is exponential. Exponential function have an expression of
the form P(m) = αβ t with time t being the exponent (hence the name).
Another possibility is that the effect of time is that of a power function.
Power functions would have the form P(m) = α × tβ , where time t is a the
base and the exponent is a fixed parameter β .

This question might seem idle, but is not. Exponential and power curves
look almost identical to the naked eye, but they have (very) different math-
ematical properties. And these mathematical properties are important if we
want to build a model. For example, an exponential function has a fixed half-
time, i.e. a fixed interval of time during which the quantity that we measure
reduces by half. This is a familiar property of radioactive materials: if a mate-
rial has a half time of (let’s say), one minute, it means that, after minute, 1 Kg
of the material will have become ½Kg, and, one minute later, the ½Kg will
have turned into ¼Kg. The pace of decay is fixed, and the half-time interval
is meaningful measure. But power functions do not have these property; they
have other interesting properties (for example, they are scale-invariant) but
their pace is ever changing.

Figure 26: Ebbginghaus’s results
from his own memory experiments

The simplest way to determine whether a particular function is an ex-
ponential or a power function is to plot them on modified axes. If both the
x and y axes are in log-scale (a so-called log-log plot), the power function
would look like a straight line, but the exponential function would look like
a curve44. For example, we can take the original data from Ebbinghaus and

44 The exponential would look like a straight
line if only the x-axis in log-scale.

then plot them on a log-log plot. The result, shown in Figure 26 , is an almost
perfect straight line.

Rationality of Memory

One of the key ideas of the Bayesian approach is that memory is adaptive.
If it is, its laws should reflect the dynamics of the environment we live in.
This assumption was empirically tested by Anderson and Schooler 45. The 45 John R Anderson and Lael J Schooler.

Reflections of the environment in memory.
Psychological science, 2(6):396–408, 1991

authors tested three different sources of information: words occurring in the
headlines of the New York Times; Words pronounced by parents to toddlers
(“child-directed speech”, available through the CHILDES database); and,
finally, email senders in Anderson’s own email inbox. All of these three
sources of information were monitored for 100 consecutive days, and the
statistics for each word collected. In each case, the the relationship between
time passed and the probability of the information showing up again followed
a power function. Not only all three sources of information follow the same
law: Their very own parameters are similar to each other!

61

The ACT-R Model

The rational analysis framework, together with the power law of forgetting,
forms the bases of what is, perhaps, the most influential explanatory model
of human memory, ACT-R 46. Many other important models (e.g., REM: 47 46 John R Anderson and Gordon H Bower.

Human Associative Memory. Psychology
Press, 2014; John R Anderson. Retrieval
of information from long-term memory.
Science, 220(4592):25–30, 1983; John R
Anderson, Daniel Bothell, Michael D Byrne,
Scott Douglass, Christian Lebiere, and Yulin
Qin. An integrated theory of the mind.
Psychological review, 111(4):1036, 2004;
and John R Anderson. How can the human
mind occur in the physical universe? Oxford
University Press, 2009
47 Richard M Shiffrin and Mark Steyvers.
A model for recognition memory:
Rem—retrieving effectively from mem-
ory. Psychonomic bulletin & review,
4(2):145–166, 1997

or MINERVA 48) share almost identical assumptions, so we can focus on

48 Douglas L Hintzman. Minerva 2: A
simulation model of human memory.
Behavior Research Methods, Instruments, &
Computers, 16(2):96–101, 1984

ACT-R without losing generality. Note that, although ACT-R has grown to
be a much more complete theory that spans more than memory, here we will
focus only on its long-term memory component.

Initially, we will not make any assumption about how memories are
internally represented. Instead, we will assume that our brain registers large
amounts of information into “snapshots” and that these snapshots, which we
will refer to as a memories, can be accessed later on.

Each time a snapshot is taken, a new trace is made. Each trace decays
with time. So, if we indicate as ti the time at which the the i-th trace was
created, then we indicate that the odds of retrieving it decay with a power
function:

P(i)
P(¬i)

= (t− ti)−d (20)

Figure 27: The odds of retrieving
a particular memory trace, created
at time ti = 0, decay over time
according to a power function

where d is the decay rate of memory, i.e., the speed at which memories are
forgotten. Figure 27 illustrates the retention curve of a trace created at time
ti = 0 with a decay rate of d = 0.5.

In the ACT-R model, it is assumed that the contribution of all traces is a
summed, that is, each trace contributes linearly to the odds of retrieving the
memory it belongs to. Thus, the odds of retrieving a memory m is the sum of
the odds of retrieving any of its associated traces.

P(m)

P(¬m)
= ∑

i

P(i)
P(¬i)

= ∑
i
(t− ti)−d

62

Finally, it is common to express memory in terms of activation, a quan-
tity that is defined as the log odds of retrieving a memory. Formally, the
activation A(m) of a memory m is given by Equation 21.

A(m) = log
P(m)

P(¬m)
(21)

One might wonder why it would be necessary to add yet another measure
of memory, after probabilities and odds. The main reason is that activation
is a convenient measure. Unlike probabilities or odds, activation values span
the entire domain of real numbers, from −∞ to +∞. The mid-point at which
a memory is equally likely to be retrieved or forgotten, which corresponds to
a probability value of P(m) = 0.5 and an odds value of P(m)/P(¬m) = 1,
becomes an activation value of A(m) = 0. In this sense, activation values can
be thought of as forming a scale with a meaningful zero value. A memory
with a positive activation value is more likely than not to be remembered,
and a memory with a negative activation value is more likely than not to be
forgotten. For this reason, it is convenient to refer to the value of A(m) = 0 as
to the forgetting threshold.

The relationship between the odds of retrieving individual traces, the
activation of a memory, and the forgetting threshold is shown in Figure 28

Figure 28: (Top) The declining
retrieval odds of three traces associ-
ated with the same memory m and
created at different times; (Bottom)
The activation of m of reflects the
summed effects of their traces and
their decline over time.

Combining Equations 20-21, we can formally define activation of a
memory at time t as:

A(m, t) = log∑
i
(t− ti)−d (22)

63

Frequency, Recency, and the Spacing Effect

Any good memory model should be able to correctly explain the fundamental
effects reported in the literature. In addition to the power law of forgetting 49, 49 Allen Newell and P Rosenbloom. Mech-

anisms of skill acquisition. In John Robert
Anderson, editor, Cognitive skills and
their acquisition, chapter 1, pages 1–56.
Lawrence Erlbaum Associates, 1981

other important memory effects include the recency, frequency, and spacing
effect.

Equation 22 captures the basic effects of recency and frequency. Re-
cency arises as a consequence of the power law of forgetting, which makes
the activation of a memory decline as a power function of its age (Figure
29A). Frequency, on the other hand, depends on the summed effect of the
accumulation of traces, by which a makes a memory with more associated
traces retains greater activation than a memory with the same age but fewer
associated traces (Figure 29B).

Figure 29: Effects of recency and
frequency

In addition to recency and frequency, another fundamental law of memory
is the spacing effect, that is, the phenomenon by which the probability of
retrieving a memory is higher when the interval between the encodings of
its traces (the “spacing”) is larger. The spacing effect is typically studied
in experiments in which a particular item is presented twice, with different
intervals between the two presentations; each presentation is assumed to
result in an independent trace. The time between the second presentation and
the final test is maintained constant, and the interval between the two traces is
varied.

It is easy to see that Equation 22 cannot account for the spacing effect, as
the combined effects of each trace are simply additive. If anything, a larger
gap implies that the first trace was created earlier than in the case of a shorter
gap. Thus, in the case of a larger gap, the activity of the first trace would have
decayed more, resulting in lesser activation for the memory—exactly the
opposite of what is experimentally found.

To account for the spacing effect, Pavlik and Anderson 50 introduced a 50 Philip I Pavlik Jr and John R Anderson.
Practice and forgetting effects on vocabulary
memory: An activation-based model of
the spacing effect. Cognitive science,
29(4):559–586, 2005

modification to the decay term d. Specifically, they relaxed the constrain

64

forcing d to be constant across all traces. Instead, they allowed every trace to
have its own specific decay term di:

A(m, t) = ∑
i
(t− t j)

dis (23)

The trace-specific term di depends on the current value of the activation
A(m, t = ti) at the moment in which the trace was created. Thus, when the i-th
trace is created, it is given a decay rate di calculated as follows:

di = c eA(m,t=ti)+α (24)

where A(m, t = ti) represents the activation of m at time ti. The spacing effect
is made possible by including the term c eA(m,t=ti) in the computation of the
decay rate. When two traces are temporally close together, the corresponding
memory’s activation at the moment the second trace is encoded is higher,
resulting in a larger value of c eB(m,t=ti) and, therefore, a larger decay rate for
the second trace.

Note that, even when allowing for different traces to decay at different
rates, decay is still determined by a single parameter, α .

The final, complete model is noteworthy for its reliability, having been
used to successfully model a variety of memory results [37, 36] and having
been used to successfully derive optimal schedules for learning practice
[38]. The rate of forgetting α in Eq. 24 has been also used as an idiographic
(i.e., person-specific) parameter 51, with α remaining a stable and reliable 51 Florian Sense, Friederike Behrens,

Rob R Meijer, and Hedderik van Rijn. An
individual’s rate of forgetting is stable over
time but differs across materials. Topics in
cognitive science, 8(1):305–321, 2016

trait within the same individual across sessions and materials, and to assess
individual differences in real-life outcomes, such as a student’s success at
answering test questions after studying [39].

Posterior Probabilities and the Role of Context

So, far, the model has included only equations that capture the prior history of
a memory, that is, the Bayesian prior odds P(m)/P(¬m). But what about the
likelihood odds P(Q|m)/P(Q|¬m) in Equation 19?

Because we have expressed the availability of memory in terms of activa-
tion, we first need to start by putting Equation 19 in log form:

P(m|Q)

P(¬m|Q)
=

P(m)

P(¬m)
)×∏

q

P(q|m)

P(q)

log
P(m|Q)

P(¬m|Q)
= log

(
P(m)

P(¬m)
)×∏

q

P(q|m)

P(q)

)

= log
P(m)

P(¬m)
)+ log∏

q

P(q|m)

P(q)

= log
P(m)

P(¬m)
)+∑

q
log

P(q|m)

P(q)
(25)

65

Equation 25 makes it clear how the concept of activation relates to
Bayesian equation: Equation 22 is really an analytic expression of the first
part of the right-hand side of this equation, i.e. log[(P(m)/P(¬m)]. This
quantity is technically referred to as base level activation, as it refers to the
changes in a memory’s activation that are only dependt on its own history and
the passing of time.

The effects of context on a memory’s availability, on ther other hand,
are captured by the second term, ∑q log P(q|m)

P(q) . According to this formula,
The contextual effects are the sum of the contributions of each cue q in the
environment that is associated with m—that is i.e., has a non-zero value of
P(m|q). This is both intuitive and appealing: Exactly like each additional
trace of m adds to m’s activation, so each additional environmental cue that is
predictive of m (that is P(m|q) > 0) adds to its activation.

But how does this summation occur? And how can we keep track of
P(m|q)? To these questions, it is necessary to explain how ACT-R internally
represents memories.

Memory Representation

In ACT-R, memories are internally represented as records of features. Histor-
ically, these records are referred to as “chunks” and their features as “slots”,
although this chapter will use the more transparent and less technical terms
“memories” and “features”. Features represent the atomic elements of a mem-
ory, such fundamental sensory information (e.g., the color yellow) and basic
concepts (e.g., the magnitude of a number). Each feature is identified by a
name and a value. For example, the property of having the color “yellow” is
represented as the pair (Color: Yellow), with the first element being the fea-
ture name and the second the feature value. Note that the name of a feature
exists only to make ACT-R programs easy to read and write, and has no im-
plication for how memories are implemented in the brain. With this in mind,
the semantic fact that “A canary is a yellow bird” can be represented as a
record of features such as [(Object: Canary), (Type : Bird), (Color: Yellow)].
A single memory can be made up of an arbitrary number of features, with
the only constraint that two features cannot share the same name. Long-term
memory is a finite collection of such memories.

Although this representational format might seem too unconstrained and
symbolic, it is equivalent to the vector representations used in other formal
models 52 or in neural network models 53 of long-term memory. In these 52 Richard M Shiffrin and Mark Steyvers.

A model for recognition memory:
Rem—retrieving effectively from mem-
ory. Psychonomic bulletin & review,
4(2):145–166, 1997; and Douglas L Hintz-
man. Minerva 2: A simulation model of
human memory. Behavior Research Methods,
Instruments, & Computers, 16(2):96–101,
1984
53 Timothy T Rogers, Matthew A Lam-
bon Ralph, Peter Garrard, Sasha Bozeat,
James L McClelland, John R Hodges, and
Karalyn Patterson. Structure and deteri-
oration of semantic memory: a neuropsy-
chological and computational investigation.
Psychological review, 111(1):205, 2004

models, a single memory is represented by a vector of fixed size; feature
names are represented by a subset of element positions in a vector; and
feature values by specific numeric values of the corresponding elements. For
example, in Rogers’ model of semantic memory, the property (Color: Yellow)
is represented in the 64 “perceptual” artificial neurons located in positions
41–104 of the network’s input layer. By contrast, the property (Type : Bird) is

66

represented by values of the 16 neurons in position 137–152. Thus, any ACT-
R memory can be transformed into a corresponding vector representation if
the list of possible features is predefined and the features that are not present
in a memory are set to a default value of zero. This translation scheme,
in fact, was used to create a functional neural network implementation of
ACT-R 54. 54 Christian Lebiere and John R Anderson.

A connectionist implementation of the act-r
production system. In Proceedings of the
fifteenth annual conference of the Cognitive
Science Society, pages 635–640, 1993

Contextual Effects and Spreading Activation

The contextual activation component of Equation 21 can best be understood
by considering a classic representation format for memories, namely, seman-
tic networks 55. In semantic networks, each memory represents a node, and 55 John R Anderson. The architecture of

cognition. Lawrence Erlbaum Associates,
1983; and Allan M Collins and Elizabeth F
Loftus. A spreading-activation theory of
semantic processing. Psychological review,
82(6):407, 1975

associated memories are connected by directional links. The strength of the
link between q and m reflects the statistics of co-occurrence between the two
events. The terminal leafs of this network represent basic, atomic representa-
tions, such as the sensory information corresponding to the “Yellow” or the
abstract concept of “Two”. Figure 30 provides a visual representation of how
the concept of “A canary is a yellow bird” is represented in such a network
and how its representation partially overlaps with the concept of “A canary
is a bird that sings”, as well as with the concepts of “The Sun is yellow star”
and “Taylor Swift is an artist who sings”.

“The Sun is a yellow star”

“Sun” “Star”

“Yellow”

“The canary is a yellow bird”

“Canary” “Bird”

“The canary is a bird that sings”

“Sings”

“Taylor Switf is a artists who sings”

“Taylor Swift” “Artist”

Color

TypeObject

Object

Color

Object Type

Object Type

Activity

Activity

Object Type

Figure 30: Semantic network
representation of the four ACT-R
memories “The canary is a yellow
bird”, “The canary is a bird that
sings”, “Taylor Swift is an artists
who sings”, and “The Sun is a
yellow star”. Grey boxes represent
basic concepts (that is, terminal
nodes), and white boxes represent
the facts built upon them

67

Contextual effects can be understood as an additional amount of ac-
tivation that flows from the memory nodes that are part of the context
Q = q1,q2 . . .qN . This activation boost is known as spreading activation
56. Greater co-occurrence of q when m is present (i.e., P(q|m)) corresponds 56 Allan M Collins and Elizabeth F Loftus.

A spreading-activation theory of semantic
processing. Psychological review, 82(6):407,
1975

to stronger links and thus results in greater activation.
But where does spreading activation come from? If base-level activation

reflects the creation of new traces and their fading due to passive forgetting,
spreading activation can be interpreted, in psychological terms, as the amount
of attention paid to the current context during retrieval. For example, the
fact that the canary sings would become more active when someone is
paying attention to the fact that Taylor Swift also sings (because of the
spreading activation from “singing”) and will become even more active when
someone is paying attention to the fact that the canary is yellow (because of
the spreading activation from “Canary” and “Bird”).

This form of attentional control can also be interpreted in terms of working
memory, that is, an individual capacity to maintain, process, and update short-
term information 57. Specifically, controlled activation of long-term memory 57 Alan Baddeley. Working memory. Science,

255(5044):556–559, 1992; Alan D Baddeley
and Robert H Logie. Working memory: The
multiple-component model. 1999; and Alan
Baddeley. Working memory. Current biology,
20(4):R136–R140, 2010

elements through attention can explain the relationship between performance
in complex span tasks and the ability to control interference 58. In fact, Daily

58 Michael J Kane, M Kathryn Bleckley,
Andrew RA Conway, and Randall W Engle.
A controlled-attention view of working-
memory capacity. Journal of experimental
psychology: General, 130(2):169, 2001;
and Gregory C Burgess, Jeremy R Gray,
Andrew RA Conway, and Todd S Braver.
Neural mechanisms of interference control
underlie the relationship between fluid
intelligence and working memory span.
Journal of experimental psychology: general,
140(4):674, 2011

and colleagues 59 were able to show that individual variations in W values

59 Larry Z Daily, Marsha C Lovett, and
Lynne M Reder. Modeling individual differ-
ences in working memory performance: A
source activation account. Cognitive Science,
25(3):315–353, 2001

capture idiographic differences in working memory performances and that
individual differences in W values, when estimated independently through a
working memory task, successfully predicted performance on other tasks that
demand cognitive control.

Formally, if there is a direct link from q to memory m, then m receives
an activation boost that is proportional to the product between the strength
of the link connecting q to m (indicated as Sq→m) and the attentional weight
given that cue. The attentional weight is usually simplified as a single scalar
quantity, W , that is assigned to all of features that are present in the context
Q.

The total amount of spreading activation S(m) that m receives is the sum
of all of the partial effects of each element q:

S(m) =W × ∑
q∈Q

Sq→m (26)

Equation 26 equation can be related to the contextual term in in Equation
21 by assuming that each association sq → m approximates the quantity
logP(q|m)/P(q). Under these conditions, the quantity P(q) can be measured
by simply counting the number n of memories that contain q as a feature.
Imagine, for simplicity, we have only one contextual cue we are paying
attention to. In this case, the amount of spreading activation from q becomes.

68

S(m) = W ×Sq→m

= W ×
(

log
P(q|m)

P(q)

)
= W × (logP(q|m)− logP(q))

= W logP(q|m)−W logn (27)

The key insight from Equation 27 is that, as n grows, the spread of con-
textual activation diminishes: the more common is a cue, the less it can
contribute to retrieve a memory. This assumption plays an important role in
explaining some paradoxical phenomena of memory retrieval, most notably
the fan effect 60. 60 John Robert Anderson. Retrieval of

propositional information from long-term
memory. Cognitive psychology, 6(4):451–
474, 1974; and John R Anderson and
Lynne M Reder. The fan effect: New results
and new theories. Journal of Experimental
Psychology: General, 128(2):186, 1999

The Fan Effect and Retrieval Times

In the fan effect, memories that share the same attribute are harder to retrieve,
and take longer time, than memories that have unique attributes when the
attribute itself is used as a cue; this is explained by the denominator n being
larger for common attributes.

To see how that happens, let us consider the set up of prototypical fan
experiment. In this paradigm, participants are asked to memorize a series
of pairs of associated nouns. Typically, the pairs are a proper nouns that
indicate a person and a location, and the cover story is to memorize where
each person is located—for example, “The Hippie is in the Park” 61. Persons 61 This is a real stimulus from the original

experiment. It was, after all, in the ’70s.and locations are distributed so that some persons are in one location only,
while other persons would visit two or three locations. Similarly, certain
locations will only contain one person, while othe location would be visited
by two or three persons. Figure 31 shows an example of stimuli used in a
experiment. The number of persons associated with each location, and the
number of locations associated with a given person, represent the fan of the
corresponding noun. In the figure, blue boxes indicate nouns with a fan of
one, such as “Lawyer” and “Store”; these boxes have only one incoming
arrow. Green boxes indicate nouns with a fan of two, such as “Hippie” and
“Park”: they have two incoming arrows. Finally, red boxes indicate nouns
with a fan of three, and they receive three arrows from three other names.

Equation 27 can be simplified to make the fan effect predictions a bit
clearer. Specifically, WlogP(q|m) can fixed to a constant value k. The
amount of spreading activation is then k−W log(n), with n being the fan
number associated with a given noun. In fact, for large n, the quantity
W log(n) can become larger than k, making the spreading activation com-
ponent negative. It follows that the additional spreading activation for any
noun is diminished in proportion to the number of associated fans. In other
words, knowing more facts about a fact might make it harder to retrieve that
fact.

69

Hippie

Captain

Debutante

Fireman

Lawyer

Park

Bank

Church

Cave

Store

Fan = 2

Fan = 1

Fan = 3

Figure 31: Typical design of a Fan
Effect experiment

In a fan experiment, p[articipants are asked to judge whether statements
connecting persons and locations are true or not, e.g. “Is the Hippie in the
Park?” (Yes, it is not). The nouns in Figure 31 are set up so that, no matter
whether a participant attempts to retrieve all the locations associated with
“Hippie” or all teh persons in the “Park”, the fan is always the same (Fan = 3,
in this case). Thus, it is possible to predict which particular pair would have
lower spreading activation, and thus would be more difficult to answer.

Because participants make very few errors in laboratory memory exper-
iments, the fan effect is typically measured not in terms of probabilities of
retrieving the correct pair, but in terms of response times. A fundamental
law of memory is that memories that are more difficult to remember (and
therefore more likely to be forgotten) also take longer to retrieve. This is
modeled by connecting the time T it takes to retrieve a specific memory to its
activation, as shown in Equation 28:

T = Ter +F e− f A(m) (28)

It is possible to use Equation 28 to derive predictions for what we would
expect. First, we split the exponent A(m) into the baseline and the spreading
components:

T = Ter +Fe− f [B(m)+k−log(n)]

= Ter +F [e− f [B(m)+k] e− f×−log(n)]

= Ter +F [e− f [B(m)+k]× e f n]

= Ter +F [e− f [B(m)+k]× f ×n]

Notice that the second term is multiplied by n: this implies every new
association between nouns contributes linearly to the time it takes to retrieve
the correct sentence. The data from the original experiment 62 confirms this 62 John Robert Anderson. Retrieval of

propositional information from long-term
memory. Cognitive psychology, 6(4):451–
474, 1974

prediction:

70

Connection to Accumulator Models

The model outlined above is a theory of a how a memory trace can be re-
trieved with time. This process can be seen as a form of race model, in
which the decision to be made is the retrieval of a memory and the process
involves the accumulation of evidence until a certain threshold is reached. In
fact, accumulator models were originally proposed precisely to explain the
mechanisms of retrieval from long-term memory 63. 63 Roger Ratcliff. A theory of memory

retrieval. Psychological review, 85(2):59,
1978

A deeper connection between accumulator models and the ACT-R mem-
ory theory was drawn by Maarten van der Velder and colleagues 64. To 64 Maarten van der Velde, Florian Sense,

Jelmer P Borst, Leendert van Maanen, and
Hedderik van Rijn. Capturing dynamic per-
formance in a cognitive model: Estimating
act-r memory parameters with the linear
ballistic accumulator. Topics in Cognitive
Science, 14(4):889–903, 2022

understand the relationship between the two process, let’s recall the equations
that control the time it takes for memory retrieval:

T = Fe− f A(m,t)

and the equation that controls the retrieval time in the Linear Ballistic
Accumulator models:

T = (A− k)/v

The first equation can be rewritten as:

T = Fe− f A(m,t)

= F/e f A(m,t)

The two equations now have the same structure, and become the same if
we assume that

F = A− k

v = eA(m,t)

Note that, since the quantity A(m, t) is supposed to reflect the log odds of
retrieving m, the drift rate v simply reflects the odds of retrieving m.

v =
P(m)

P(¬m)

Also, it follows that, if we have modeled a memory retrieval process with
LBA, we can translate our findings in ACT-R by calculating directing the
activation level of the retrieved memory:

A(m, t) = logv

Part II

Neural Networks

Perceptrons and Feedforward Networks

In the previous chapters we have seen theoretical frameworks that describe
the computations of certain brain circuits. However, we have rarely discussed
how brain circuits can carry out these computations, or any computation at
all.

An alternative to these approaches is to model the basic computations of
the neurons first, and see how different behaviors can be generated by it. This
approach is often known as connectionism or parallel distributed processing.

The McCullogh-Pitts neuron

The simplest model of the neuron was proposed by McCullogh and Pitts in
1943 65. At the time, computers were in their infancy but the theory behind 65 Warren S McCulloch and Walter Pitts. A

logical calculus of the ideas immanent in
nervous activity. The bulletin of mathemati-
cal biophysics, 5(4):115–133, 1943

them was already established. Among other things, it was established that
universal computing machines could work with binary representations that
are operated upon by a set of logical gates.

McCullogh, a neuroscientist, and Pitts, a mathematician, noted that
biological neurons could be thought of as logical gates. A neuron, they
reasoned, can be in one of two states: It is either firing an action potential,
or not. These two states can be mapped to the binary codes of 1 and 0 in
a digital computer. Neurons are interconnected, thus each neuron receives
inputs from a subset of other neurons. These connections can be thought of as
a set of logical predicates (each of them also being 0 or 1) entering a logical
proposition, and the neuron’s response as the output of such proposition.
Abstracting away from all of the biological details, they proposed a highly
stylized model of the neuron’s computations.

74

...

∑i xi−θ

I1

I2

I3

In

y

w1

w2

w3

w4

Inputs Output

Although extremely simple, this model proved phenomenally useful. In
fact, pretty much everything else in the history of artificial neural networks
has been built on small variations of this model.

In this model, the neuron’s soma sums up all of the inputs from all of its
input neurons x1,x2 . . . ,xn. This sum is compared to an internal threshold
θ , which represents the neuron’s membrane potential. If the sum of all the
inputs of all neurons exceeds the threshold, the neuron fires. If not, the
neuron remains silent. Formally, the output of the neuron, y, is defined as:

y =

1, if ∑i xi−θ > 0

0, if ∑i xi−θ ≤ 0
(29)

Neurons as Logic Gates

The original goal of McCullogh and Pitts was to show that assemblies of
their simplified neurons (and, by extension, the human brain) could work to
compute Boolean functions. In computer science, Boolean functions, such as
AND and OR, are known as logical gates and, because they operate on and
return only the binary values 0 and 1, they are the basic components of the
bit-wise operations of any modern digital computer.

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

Table 5: The AND logical gate

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1

Table 6: The OR logical gate

As a start, let us consider the two most common Boolean functions, the
AND and OR gates. These functions can be expressed as simple table that
express the desired output, 0 or 1, for each combination of their two inputs.
The AND function will return 1 only if both of its arguments are 1, while the
OR gate will return 1 if at least one of its arguments is 1 (Tables 5 and 7).

To implement these gates, we can create a simple network with two
input neurons connected to a single output neuron. The architecture of such

75

network is shown in Figure 32:

x1

x2

∑i xi−θ

I1

I2

y

Inputs Output
Figure 32: A network of
McCullogh-Pitts neurons de-
signed to simulated a two-argument
logical gate, such as AND or OR.
The input units represent the truth
values of its arguments, while
the output value represents the
truth value of the corresponding
function.

It is very simple to set up this network to implement either an AND or a
OR gate by changing the value of the threshold θ of the output neuron. This
is easy to visualize if we represent the values of the two input neurons as axes
of a bi-dimensional plane (Figure ??. The summed inputs can be visualized
as a line passing the plane, and the threshold θ as the horizontal offset of
that line. By adjusting θ , the line can be moved to effectively isolate the
responses we want from the output neuron. When θ = 0, an output of 1 from
a single input neuron is sufficient to elicit a response in the output neuron.
When θ = 1, however, both neurons need to active to elicit a response.

Figure 33: A single McCullogh and
Pitts neuron can work as an AND
or as an OR logic gate by setting its
threshold θ at different values. In
both panels, the blue line represents
the sum of the two inputs (x1 and
x2) minus the threshold; points
represent the four possible input
configurations; red points represent
input configuration that trigger a
response in the output neuron.

As it turns out, however, AND and OR gates are not sufficient to create
a digital computer: other logical functions exist that cannot be created by
simply combining ANDs and ORs. One of the fundamental gates that is
needed to create a working computer is the NOT gate, which corresponds to
the logical operation of negation.

x y
0 1
1 0

Table 7: The NOT logical gateThe NOT gate takes a single argument x and returns 1 if the x = 0, and 0 if
x = 1. It is easy to see that, no matter which threshold value is picked, there is
not way to make the output neuron respond in the desired way.

To make it work, we need to introduce the next important approximation
to the artificial neuron, the synaptic weight w. Much like real synapses,
synaptic weights in neural networks modulate the effect of the input neuron
on the output neuron. Specifically, the output neuron now fires based on
thresholded, weighted sum of its inputs, i.e. ∑i wixi−θ .

76

x wx−θ
I1 w = −1

Input Output

θ = −1

y

Figure 34: A network implement-
ing the NOT gate with McCullogh-
Pitts neurons

The NOT gate can be implemented with two McCullogh-Pitts neurons,
one for the input and one for the output, as shown in Figure 34. The correct
behavior can be achieved by manipulating both threshold and synaptic
weight, and, specifically, by setting w = −1 and θ = −1.

Complex Logical Operations

With the addition of synaptic weights, we can now combine multiple
McCullogh-Pitts neurons to create complex logical circuits. It can be demon-
strated, in fact, that arrangements of McCullogh-Pitts neurons can be used to
create digital computers—a CPU is, in the very end, a collection of logical
gates. The possibility of creating any complex logical operation out of ba-
sic logical operations is called functional completeness and is an important
property of any computing device. If a set of logical gates is functionally
complete, then any arbitrary logical function can be built out of them and,
because all of the operations on a computer are logical operations (as they
work on bnary values), then any function can be computed with them. It can
be mathematically shown, for example, that AND and NOT are functionally
complete; thus, because these these two functions can be implemented with
McCullogh-Pitts neurons, McCullogh and Pitts neurons are functionally
complete.

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

Table 8: The XOR logical gate

A canonical test case for functional completeness is the "Exclusive OR"
gate, or XOR. This is a logic function that take two binary values and returns
1 if only one of its values is 1, and return zero if they are both 1 or both 0
(Table 8)

x1

x2

θ = 0

OR

θ = 1

AND

θ = −1

NOT θ = 1

AND

w = −1

Figure 35: A network implement-
ing the XOR gate with McCullogh-
Pitts neurons

77

Perceptrons

The McCullogh-Pitts neuron is strictly binary to reflect the property, that, at
any point in time, neurons either fire or do not. However, while apparently
faithful to the biological properties of neurons, this simplification misses
the point that neurons also transmit information over time. In this sense, it
becomes important to think not only of whether a neuron fires, but also how
frequently. This fact is well-known to neurophysiologist, who indicate the
frequency of action potentials as the neuron’s firing rate.

One could have MP neurons firing at realistic time levels. This approach,
known as spike-coding, pushes for realistic simulations.

A simpler approach is to use continuous activation functions and take their
output value as a proxy of how much a neuron is firing. This approach is
called rate-coding, and is the dominant approach in artificial neuron networks.
All of contemporary AI is based on rate-coded neural networks.

When one moves from the binary units of McCullogh and Pitts to rate-
coded neurons with continuous activation functions, the first problem to
solve is, which activation function should we use? We will start this chapter
with the simplest possible function, that is, a linear function. The output
of a linear unit y j is simply the summed of the outputs of its input neurons,
weighted by the respective synaptic weights, minus a threshold:

y j = ∑
i

wi, j xi−θ (30)

These type of linear neurons are typically called perceptrons 66 and were 66 Frank Rosenblatt. The perceptron: a
probabilistic model for information storage
and organization in the brain. Psychological
review, 65(6):386, 1958

the bases of an early type of brain-inspired digital computer capable of
learning, the Mark I. They key to perceptrons is that, unlike McCulloch and
Pitts neurons, they can learn how to perform new tasks.

Learning in Perceptrons

The main idea behind perceptrons (and, in fact, artificial neural networks in
general) is that they can learn in a way that is similar to the way the human
brain learns. Looking at Equation 30, it is clear that there are only a few
terms that can be operated upon:

1. The threshold θ . A neuron can become more or less resistant to change
from its inputs. This is the bases of the so-called BCM learning rule 67. 67 Elie L Bienenstock, Leon N Cooper, and

Paul W Munro. Theory for the development
of neuron selectivity: orientation specificity
and binocular interaction in visual cortex.
Journal of Neuroscience, 2(1):32–48, 1982

2. The inputs x j. In particular, new units can be added or removed from the
network. This corresponds to the biological processes of cell death and
neurogenesis, and is the basis of the learning algorithm known as Cascade
Correlation 68. 68 Scott E Fahlman and Christian Lebiere.

The cascade-correlation learning architec-
ture. Technical report, Carnegie-Mellon
University, School of Computer Science,
Pittsburgh, PA, 1990

3. The synaptic weight w j,i. This corresponds to the biological process of
long-term potentiation (LTP) and long-term depression (LTD), and is

78

perhaps the most ubiquitous form of learning in the nervous system.

As it happens, virtually all learning algorithms for neural networks
are expressed in terms of w j,i. In fact, changes in a neuron’s threshold or
adding/removing units can also be expressed in terms of conveniently modify-
ing synaptic weights, so this has become the most fundamental way to frame
learning in artificial neural networks.

Learning as Gradient Descent

Although learning algorithms for neural networks take different forms that
are highly dependent on the structure of the network, most of them share a
the same general structure: they are all form of gradient descent over the
network’s error function.

The idea of gradient descent can be easily understood imagining the
simplest possible network, a network that contains two input neurons and one
output neuron. Let’s say that we want the neuron to perform the logical AND
function: it needs to return 1 when both of its neurons are 1.

For such network, we can imagine an error function that is the sum of
the squared response error over all the possible patterns: (0, 0), (0, 1),(1, 0),
(1, 1). For all the values of w1 and w2, we can calculate the output neuron’s
response (it’s just (w1x1 +w2x2)2 across the four possible combinations of x1

and x2). The result is a 3D surface, shown in Figure 36

Figure 36: Error function for a
simple perceptron computing the
AND logical function

Note that the surface never actually reaches zero, which means that
this perceptron will never learn to give the exact solution. However, for
different values of w1 and w2, the network makes smaller or larger error.
More importantly, there is a point in which the network’s error is the smallest

79

possible. This location, called the global minimum, is where we want to train
our network to be.

Now, imagine to place a ball anywhere on that surface; it would roll
downhill towards the minimum. In doing so, the ball will naturally move
towards states that have the lowest potential energy, which is, in turn, a
function of the height of the surface. When rolling down along the surface
doing so, the ball will naturally follow the direction of the steepest decline.
The idea of gradient descent is to simply borrow this physical analogy and
transfer it to the error surface. Like a ball moves to minimize its elevation, so
we want to move to reduce the height of the error curve. In fact, the idea of
gradient descent is so general that virtually every learning algorithm can be
expressed as a form of gradient descent69. 69 For instance, all of the Reinforcement

Learning algorithms in the previous chapter
can be formalized as gradient descent over
an error surface.

In a neural network, gradient descent can be formalized as follow. First,
let’s define an error function that captures the degree to which the behavior
of the network departs from the intended or target behavior. Such an error
function is commonly know as a loss function an indicated with the letter L.
In general the error or loss function is defined over a set of patterns P, each
of which is a combination of input vectors xp and a desired target response
value tp. For each pattern, we can record the squared difference between the
target response tp and the actual neuron response yp. As defined above, the
loss function is the sum these squared differences over all possible patterns P.
Formally:

L =
1
2 ∑

p
(tp− yp)

2 (31)

What we want to do is to change the synaptic weights in such a way that
would reduce the value of L. To do this, we calculate the first derivative of the
loss function:

∆wi, j = −
∂L
wi, j

(32)

To calculate this quantity, we will use the chain rule, splitting the partial
derivative as the product of two derivatives of related quantities:

∂L
wi, j

=
∂L
y j
× ∂y

wi, j

These two quantities represent (1) the change in error due to a neuron’s
activity and (2) the change in a neuron’s activity that is due to a synapse.
They can be calculated separately.

The first quantity is easy to calculate, as it is the very definition of error in
Eq. 31, and is just the squared difference between the target and the actual
value of the neuron. In turn, this is a an easy derivative to calculate:

80

∂L
y j

=
∂

1
2 ∑p(t j− y j)2

y j

=
1
2 ∂ ∑ j(t j− y j)2

y j

=
1
2
×2× (t j− y j)

= (t j− y j)

The second quantity ∂y j/∂wi, j depends on the activation function. In
our simplified world of perceptions, the activation function is linear, so
y j = ∑i wi, jxi:

∂yi

wi, j
=

∂ ∑i wi, jxi

wi, j

=
wi, jxi

wi, j
= xi

Putting both results together, we have a definition of the gradient descent
learning rule for perceptrons:

∂L
wi, j

= (t j− y j)× xi

This quantity gives us the slope of the error curve at a particular point in
time. To learn the correct values for each wi, j, we are just going to follow the
gradient downwards, and adjust the synaptic weight accordingly:

wnew
i, j ← wold

i, j −η(t j− y j)× xi (33)

In Eq. 33, the parameter η is the learning rate, and is equivalent to the
parameter α in reinforcement learning. It has a negative sign because the
learning happens in the opposite direction (i.e., downwards) of the slope of
the curve 70. In the neural networks literature, it is common to express these 70 Now you are ready to answer this ques-

tion: Why was α positive in RL? Which
function were we climbing upwards?

learning rules as a function of ∆wi, j, that is, the change in synaptic weight,
and write them as:

∆wi, j = −η(t j− y j)× xi

To implement gradient descent, a perceptron is first initialized with
random synaptic weights, and then trained by applying Eq. 33 over a series
of consecutive epochs, progressively changing the synaptic weights until we
reach the lowest value of the error function.

The plots in Fig. 37 illustrate this progress. The plots represent data
from the perceptron representing the AND gate and whose error surface in
depicted in Fig. 36. Specifically, the plots represent how the two synaptic

81

weights w1 and w2 (left two panels) and the error function (third panel)
change over 50 epochs of training with a learning rate of η = 0.05. In this
case, we initialized the weights to the values w1 = w2 = −1, which give the
greatest error value in Fig. 36. With every training epoch, the weights are
corrected upwards and the error declines. Eventually, after 50 epochs, the
error function reaches a plateau and the synaptic weights reach an asymptotic
value of 0.33. At about this value, the network error is minimal. As we noted
before, the network never reaches a “perfect” response, but it does reach a
reasonable approximation. The fourth panel in Fig. 37 shows the perceptron’s
responses (as blue bars) to the four possible inputs of a logic gate, together
with the desired responses (as red dots). The perceptron over-responds to
the two cases, (0, 1) and (1, 0) in which one of its inputs is turned on, and
under-responds when they are both on. It would still be possible, however, to
create a digital circuit out of this neuron, for example by applying a threshold
at θ = 0.5 (the grey dashed line).

Figure 37: A perceptron learning
the AND logical gate.

As the third panel shows, the gradient descent algorithm has identified a
place in which the error is minimal: any change in synaptic weights would
either increase the error to the responses to (0, 1) and (1, 0) or increase the
error for (1, 1). The error plot in Figure 37, in fact, is a 2D visualization of
the trajectory followed by the network as it descends the error surface in
Figure 36. Figure 38 visualizes the consecutive steps of this path over the
error surface, showing how it follows the steepest descent down to the basin
of the curve.

!h

Figure 38: The learning path of
Figure 37 overlaid over the error
surface of Figure 36

.

Thresholds and Bias Units

It is possible to apply the principle of gradient descent to find solutions not
only for each synapses wi, j but also for each threshold θ of each neuron.
In fact, the two approaches can be applied together, further improving the
performance of a perceptron.

Although learning algorithms exists that specifically work on the neuronal
thresholds 71, this is, however, rarely done in practice. The reason is that 71 Elie L Bienenstock, Leon N Cooper, and

Paul W Munro. Theory for the development
of neuron selectivity: orientation specificity
and binocular interaction in visual cortex.
Journal of Neuroscience, 2(1):32–48, 1982

it is possible and easy to recast the role of a neuronal threshold in terms
of synapses. This can be done by expanding the network adding one more

82

“dummy” input neuron whose activation is always x=−1. This dummy neuron
is called the bias unit and indicated as b. The product xbwb of the bias unit’s
output and the corresponding synaptic weights plays the same functional role
as the threshold θ . By learning the optimal value of wb together, a perceptron
is effectively learning the optimal value of the threshold θ .

Image Recognition with Perceptrons

For all of their theoretical interest (and we will return to them), logical gates
are not the most relevant task that neurons have evolved to solve. Instead,
we will apply our learning rule to a simple visual task, the recognition of
character. After all, there is a reason these models are called “perceptrons”!.
In fact, character recognition is one of the best-known benchmark tasks
in machine learning and it has a an associated database, MNIST 72, of 72 Yann LeCun. The mnist database of

handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998

thousands of hand-written digits that is routinely used to measure of the
performance of different algorithms.

Figure 39: Simple single-digit
stimuli for a perceptron.

To keep things simple, we will start with a much simplified version of
MNIST stimuli, one in which all digits are stylized, LED-like numbers in a
7×4 grid (Figure 39).

To start, we will train a simple perceptron to recognize just one number,
the number 7. To do so, we will create a network designed as in Figure.

x1,1

x1,2

x1,3

x1,4

x1,5

x1,6

x1,7

x2,1

x2,2

x2,3

x2,4

x2,5

x2,6

x2,7

x3,1

x3,2

x3,3

x3,4

x3,5

x3,6

x3,7

x4,1

x4,2

x4,3

x4,4

x4,5

x4,6

x4,7

∑i wixi−θ

Figure 40: Architecture of a percep-
tron for recognizing the digits of
Figure 39

In this figure, the cells of the digit matrix represent the inputs to the
neuron. We can think of them as neurons whose activation value is clamped
and fixed to the value of the corresponding cell. All of these 7× 4 neurons
connect to a single output neuron, whose intended target responses is 1 if the
number is 7 and 0 otherwise.

To do

83

Examining the Weights

In neural networks, virtually all of the computations occur through the
synapses that connect different layers of neurons. For this reason, examining
the synapses is the easiest way to understand what the network has learned
during training. Figure 41 visualizes the synapses connecting the input
neurons to the output unit after the perceptron has been trained to recognize
each of the digits of Figure 39.

Figure 41: Weights of the percep-
tron after training it to recognize
each of the digits in figure 39

Limits of Perceptrons

Although perceptrons do seem amazing, they are actually pretty limited, as
was pointed out as early as the ’60s 73. Their main weakness is that they rely

73 Marvin Minsky and Seymour A Papert.
Perceptrons: An introduction to computa-
tional geometry. MIT press, 2017

on linear activation functions—a fact that inherently limits their ability to
approximate functions.

As an example, let’s try to train a perceptron to perform the XOR function
we have seen in section II. The perceptron for the XOR gate has the same
structure as the perceptron for the AND gate; the only thing that changes
is the specific patterns of inputs and targets it is trained on. Unfortunately,
gradient descent cannot find a solution for such problem, as shown in Figure
42.

Figure 42: A perceptron cannot
solve the XOR problem

In the case of McCulloch and Pitts neurons, it was possible to create a
XOR network by wiring together multiple neurons in layers. Would it be pos-
sible to do so with perceptrons? The answer, sadly, is no. The key difference
is that the McCullogh and Pitt neurons use a step activation function (Fig. 29).
No matter how many layers are used, a network of perceptrons will never be
able to learn to even approximate a XOR function. The reason, again, lies in
the use of a linear activation function: the sum of multiple linear functions
is still a linear function. Thus, any two neurons wired up in sequence with
synaptic weights w1 and w2 can always be reduced to a single neuron with
a synaptic weight equal to w1×w 2. No matter how many layers we add, a
network of perceptrons with a linear activation function remains a linear
classifier.

84

In fact, perceptrons are mathematically equivalent to linear regression
models in statistics: while they can extract the ideal combination of weights
to predict a particular outcome from data, they can only do so if the intended
responses are linearly separable.

Problems like the XOR gate, by contrast, are not linearly separable: if we
represent the problem on a 2D space, with the two axes being the possible
values of the input neurons x1 and x2, it is not possible to draw a straight line
that separates the correct solutions (blue dots in the left panel of Figure 42)
from the incorrect ones (orange dots).

Feedforward Networks and Backpropagation

To overcome the limitations of perceptrons, it is necessary to have networks
with multiple layers of neurons and non-linear outputs. The general mathe-
matical expression of non-linear neurons is:

y = f (∑
i

wixi−θ)

where f is the neuron’s activation function. The two most typical non-
linear activation functions are the logistic function y = 1/(1+ ex) and the
hyperbolic tangent function y = tanh(x). Both functions are non-linear and
have a bounded range (between 0 and 1 and between -1 and 1, respectively),
which is helpful in preventing a neuron’s output to grow unbounded. Finally,
and unlike the step function, both functions are continuous and derivable—an
important characteristic for making them trainable through backpropagation.
The two functions are illustrated in Figure 43.

Figure 43: Two common non-linear
activation functions, the logistic
function (left) and the hyperbolic
tangent function (right)

Backpropagation

Backpropagation is a generalization to the principle of gradient descent
to the case of non-linear neurons. It was discovered at least twice, first by
Paul Werbos in his 1974 dissertation and then again in 1986 by Rumelhart,
Hinton, an Williams who published the paper that popularized it 74 and that 74 David E Rumelhart, Geoffrey E Hinton,

and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature,
323(6088):533–536, 1986

kickstarted the neural networks revolution of the ’80s.

85

The fact that units are non-linear complicates the situation quite a bit, but
the math can still be worked out. As in gradient descent, we can use the chain
rule to decompose the derivation of the error function. Only, this time we will
apply the chain rule twice, dividing the derivative of the error function into
three components: (1) the change in error E due o the change in the output
of a neuron y j; (2) the change in the output of a neuron due to a change in its
input in j, and (3) the change in the input of a neuron due to a change in the
synapses wi, j projecting to neuron j.

Because this decomposition would lead us to consider the output of
neurons in different layers, we will add an extra index to our notation, using
the expression yl

j to indicate the output of the j-th neuron in the l-th layer.
(Note that, in this notation, l does not represent an exponent, but yet another
index). Furthermore, layers will be numbered consecutively, with the first
layer (l = 1) corresponding to the input layer and the last layer corresponding
to the output layer of a network.

With this notation in place, we can now define the new gradient descent
rule as:

∂L
∂wi, j

=
∂E
∂yl

j

∂yl
j

∂ inl
j

∂ inl
j

∂wi, j
(34)

Now, each of these terms can be examined separately. The easiest term is
the last one, which can be simplified as follows:

∂ inl
j

∂wi, j
=

∂ ∑i yl
iwi, j

∂wi, j

= yl
i

Conceptually, this result has a straightforward meaning—the change in the
net input of a neuron in layer due to a change in the synapses is simply the
amount of activation that flows through that synapses, that is, the output of
the projecting neuron from the previous layer.

The second term in Eq. 34 is also fairly simple to calculate:

∂yl
j

∂ inl
j
=

∂ f (inl
j)

inl
j)

= f ′(inl
j)

Again, the interpretation is straightforward: the change in the output of
a neuron due to a change in its input is just the derivative of its activation
function (this is literally the definition of a derivative!).

The remaining term ∂L/∂wi, j, however, is a bit harder to calculate. If the
neuron yl

j is in the output layer, then the change is simply the derivative of the
error function, which we have already calculated in the case of perceptrons

∂E
∂yl

j
=

∂
1
2 (t j(p)− yl

j)
2

∂yl
j

= t j(p)− yl
j

86

But what if neuron j is not an output neuron and belongs to a middle
layer instead? In general, it is impossible to solve this case exactly without
knowing the precise geometry of the network and working out all the details
for how errors propagate through different layers. We can, however (and
this is the genius intuition!) simply express the effects of a change in the
neuron output on the global error as a function of the effects that change
in neuron output has on the error of the next layer l + 1. Because we can
calculate exactly the change in error for the last (output) layer, the error of all
the previous layers can be calculated recursively.

Specifically, the quantity ∂E/∂yl
j can be rewritten as:

∂L
∂yl

j
= ∑

k

∂E
∂yl+1

k

∂yl+1
k

∂ inl+1
k

w j,k (35)

This follows from the consideration that, whatever the change in error E
due to the change in output y j, it will necessarily propagate to the next layer
through the effects that j has on the inputs of all of the neurons j projects
to—which are, in turn, propagated through their specific synapses w j,k.
Notice that the first two terms of Eq. 35 are just the second and third term
of backpropagation for layer l + 1. This implies that backpropagation can
be applied recursively, by first calculating the error for the output layer, and
then calculating the error of all the other layers by multiplying the error in the
layer above by the synaptic matrix between the two layers.

The power of backpropagation (and, for that matter, its very name) lays
precisely in its recursive formulation. Once a stable estimate for errors is
computed at the output layer, the adjustments in synaptic weights become a
simple chain of operations, in which the results of the previous step are used
as an argument for the current calculations. It is also extremely general, as it
allows to train complex networks with an arbitrary number of layers. To see
these types of computations in action, we will now consider the following
implementation.

Implementation

At the core, all the operations of a neural network can be expressed in the
form of linear algebra. This is the internal representation used by all modern
software packages, and it is key to the great speed-up in performance for
neural models that was made possible by the availability of GPUs (which
operate on numeric value matrices rather than logical instructions).

In this formulation, a layer of neurons in position i is represented as a
vector yi, and the synapses between the i-th and the jth layers of neurons
are represented as a matrix Wi, j (notice that now i and j indicate layers,
not individual neurons!). The inputs to layer j are the product between the
synaptic matrix and the transpose of the input layer vector: Wi, j yT

i . The
activation function f now becomes a vector function f (x), which is applied

87

to all the elements of vector x.
To propagate an specific pattern through a network, we perform the

following matrix operations recursively. Starting with the second layer i = 2:

1. Calculate the input to layer i: ini = Wi−1,i yT
i−1

2. Calculate the output of layer i: yi = f (ini)

3. Repeat until there are no more layers.

During training, instead, the network is examined backwards, updating
each synaptic matrix recursively. Specifically, starting with the synaptic
matrix Wi, j that is closest to the output layer, we perform the following
operations:

1. Calculate the derivative of the following layer j, y′j = f (y j)

2. Record the error e j of the following layer j. If layer j is the output layer,
its error can be calculated directly: e j = t(p)− y j. If j is not the output
layer, its error would have been calculated in the previous pass.

3. Record the output of the previous layer, yi

4. Update the synaptic matrix Wi, j: ∆Wi, j = ηyi[y′j� e j]

5. Finally, calculate the error in the previous layer, ei, by propagating back
the error of the next layer through the synaptic matrix: ei = e jW T

i, j

6. Repeat the steps above for the next synaptic matrix down the network’s
hierarchy, until there are no more synapses to update.

How Many Layers? The Computational Power of Feedforward Networks

Backpropagation allows us to relax the two limitations of perceptrons,
namely, linear activation functions and single layers. But how powerful
are our neural networks now? Can we achieve the same power of a digital
computer, like the original McCulloch-Pitts neurons? And, if so, how many
layers would be needed?

The surprising answer is given by Cybenko’s theorem 75, and is that three 75 George Cybenko. Approximation by
superpositions of a sigmoidal function.
Mathematics of control, signals and systems,
2(4):303–314, 1989

non-linear layers are all that is needed emulate any digital computer. More
precisely, Cybenko’s theorem states that any computable function (that is, any
function that can be executed on a digital computer) can be approximated, to
an arbitrary degree of precision, by a three-layer feed-forward neural network
with sigmoid activation neurons. Note that Cybenko’s theorem is highly
theoretical: Why McCulloch and Pitts showed exactly how their types of
neurons could be combined to create arbitrary logical functions, Cybenko’s
theorem only guarantees that there exists one feedforward network whose
synaptic matrices are set up in such a way to approximate the function to a
desired level. More importantly, it does not say anything about how many

88

neurons would be needed, nor how such network would need to be trained.
Still, the result is impressive and certainly contributed to popularizing this
type of networks. I think most neuroscientists would agree that sigmoid
feedforward neural networks were the most common type of network one
would find in modeling papers of the 90s and 00s.

But let’s test Cybenko’s theorem with a practical example: Training a
feedforward neural network to perform the XOR logical function. In this
case, the network can be trained over the full list of possible arguments of the
function, i.e., the pairs (0,0), (0,1), (1,0) and (1,1).

In this specific example, we will create a network with six neurons: two
in the input layer (to represent the initial logical values), one in the output
layer (to represent the logical gate’s output), and three sandwiched in the
middle layer, which is commonly known as the hidden layer of the three-
layer network. The network will be initialized by giving each synapse a small
random value, and will be trained with backpropagation over all of the four
known examples in the training set. The learning rate will be set to η = 0.01.

Figure 44: Architecture of a feed-
forward neural network to solve the
XOR problem

x1

x2

h1

h2

h3

y1

All of the neurons will use the logistic function (Figure 43, left) as their
activation function. The logistic function has the attractive property of having
a convenient derivative, which has traditionally made it a darling of neuron
netwok models. Specifically:

y =
1

1+ e−x

y′ =
1

1+ e−x ×
(

1− 1
1+ e−x

)
y′ = y× (1− y)

That is, the derivatived of the activation function y′ can be calculated
directly by multiplying the neuron’s output y by its complement (1− y),
further simplifying the calculations.

The left panel in Figure 45 shows how the error of the network changes
over the different epochs of training. Unlike the smooth gradient descent of
perceptrons, the profile of the error function alternates between plateaus and
sharp drops in the error. This is one of the consequences of the non-linearity
of the network. The right panel shows the network response to the XOR
patterns, using the same conventions of Figure 37: red dots represent the
desired response and blue bars represent the network’s output to each pair.
Unlike perceptrons, the network can learn an extremely good approximation
to the XOR function—in fact, as Cybenko’s theorem states, it is possible
learn an arbitrarily good approximation by varying the size of the hidden
layer and the duration of training.

In the case of a feedforward neural network, we can examine what has
been learned by inspecting the activity elicited by the different training inputs
on the hidden layer. In our case, the hidden layer is made of three neurons, h1,

89

.

Figure 45: (Left) Decline in the
network error over 5,000 train-
ing epochs; (Right) Responses
of the XOR network trained with
backpropagation

h2, and h3, and four inputs were used during training. Figure ?? illustrates the
different responses of the three hidden units to the four possible inputs:

90

Figure 46: Responses of the three
hidden neurons of the XOR net-
work to the four possible logical
inputs

Convolutional Neural Networks

The simple character recognition system we have seen so far would not cut
it for long. Although it is possible to train a simple feedforward network
to perform extremely well on a database such as MNIST, some substantial
obstacles remain to its realistic use. This is because, despite its variety, the
MNIST stimuli are still very carefully chosen. All the numbers are isolated,
centered, and occupy roughly the same size. If any of these assumptions is
violated, however, the network would fail.

Consider, for example, scale invariance. All of the stimuli in MNIST
database are carefully designed to take roughly the same amount of space
on the image. But the size of handwriting also varies across individuals,
with some writing in very large, and some others in very small, characters.
Once a network has learned how to respond to a large “7”, it will likely not
generalize to a small “7”. Another problem is translational invariance. The
MNIST digits are all nicely centered in the middle of their matrices. Finally,
in the most complicated case of object recognition, we have the problem of
viewpoint invariance: We can recognize a object or a friend’s face even if
seen from unusual points of view.

These limitations do not violate Cybenko’s theorem. As we noted before,
Cybenko’s theorem does not say how a network could be trained to approx-
imate any function. In the limit, approximating the function might require
training the network for an inconceivably long amount of time over all of the
possible examples of this function.

Instead, what we really want is a network that can generalize what it has
learned and apply it to different stimuli.

Convolutional neural networks differ from the simple networks we have
seen so far in three fundamental aspects.

The first is that they use multiple hidden layers. It is the use of multiple
layers that has given this research the name of “deep learning”.

The Convolutional Layers

The first is the use of convolutional layers and units with limited receptive
field. To

To understand how convolutional layers work, let’s consider a hypothetical
CNN built from scratch. The input layer of our network will be a 16× 16
matrix. Instead of being connected to each unit in the input layer, units in the
hidden layer are connected only to a subset of units. These connections are
topologically organized.

In addition to having a limited and partially overlapping receptive field,
units in a convolutional layer have another characteristic: All of the input

91

Input Layer Convolutional Layer
Figure 47: Architecture of a convo-
lutional layer

synapses have exactly the same weights.
To understand how that works.

The Subsampling Layers

In addition to convolutional layers, CNNs typically contain subsampling
layers, also known as maxpooling layers. In fact, CNNs typically alternate
convolutional and subsampling layers.

Input Layer Subsampling Layer
Figure 48: Architecture of a sub-
sampling (or maxpooling) layer

ReLUs

The third and final ingredient in CNNs (and, in fact, in most modern neural
networks) is the use of a particular form of activation function known as the
Rectifier Linear Unit, or ReLU . A ReLU unit responds only if its summed
input is greater than zero. If that is the case, the unit simply returns its
summed input, otherwise, it returns zero:

y =

∑i xi, if ∑i xi > 0

0, if ∑i xi ≤ 0

As usual, the threshold θ is ignored and we will assume that a bias unit is
automatically added to the unit’s inputs.

92

ReLUs offer many advantages. First, although the ReLU function is non-
linear, its positive part is a simple linear function, which greatly simplifies all
computations. Second, because they are silent (i.e., y = 0) for all values that
do not exceed the threshold. Imagine a network that is initially set up with
small random synaptic values: Statistically, it is expected that about half of
the neurons would received small negative inputs. As a result, about half of
the units would be silent. This makes it easier to sparsify the representations.
Among the disadvantages of ReLUs is the fact that their activation function
is discontinuous and, therefore, non-differentiable. Because of this, some
researchers prefer to use the softplus function y = log (1/(1+ ex)). Most
modelers, however, simply split the ReLU into two differentiable parts, the
linear part when its inputs are x > 0 (and whose derivative is dy/dx = 1)
and the constant part where the inputs are x < 0 (and whose derivative is
dy/dx = 0).

AlexNet

The ideas outlined before were originally presented by Yann LeCun in a
1998 paper that achieved unprecedented success in recognizing the hand-
written digits of the MNIST database 76. However, it was a 2012 paper 76 Yann LeCun, Léon Bottou, Yoshua

Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324,
1998

that really made them mainstream. That paper introduced a system called
AlexNet 77, which learned to correctly classify (with up to > 80% accuracy)

77 Alex Krizhevsky, Ilya Sutskever, and
Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks.
Advances in neural information processing
systems, 25, 2012

the 1.3 million images contained in the ImageNet database. It is impossible
to overestimate the impact that AlexNet has had on both AI and computa-
tional neurosciences; at the moment of writing, that paper has amassed over
100,000 citations, making it one of the most cited scientific paper of all time,
across all fields.

The Visual System

One of the remarkable thing about CNNs is the degree to which they resem-
ble the architecture of the visual system.

As an example, compare the 96 kernels learned by AlexNet’s first convolu-
tional layer with the actual recordings of V1 neurons in the macaque.

ere explain artiphysiology and how AlexNet’s cells are remarkably similar
to real V4 cells

Image Computable Models

Image computable vs non-image computable models
To give an example of how remarkable AlexNet is, we can compare it to

two other models.
The first is Poggio’s model.
The second is Pasupathy’s model.

93

Deep Learning

The series of ideas outlined in the previous sections, based on stacking
multiple convolutional layers, are the foundation of what is now called “deep
learning”, which has become, since the 2010s the dominant field of AI.

Hebbian Learning and Autoassociators

Since its first proposal, backpropagation has been both celebrated for its
power (it can be generalized to train any network) and caused many eyebrows
to rise for its apparent lack of biological plausibility. After all, for backprop-
agation to mimic the type of learning that happens in biological neurons, a
number of things would need to occur:

• Networks would need to have purely feedforward projections;

• Somehow, they would need to be able to calculate the an error function
that is dependent on the response of the neurons they are projecting to;

• Somehow, these error values would need to find their way back without
feedback projections;

• The error values should be modulated by the derivative of the neurons’
activation function.

Critics typically point out that, exactly the artificial neuron, the backprop
algorithm is a convenient approximation of the underlying biological process.
For example, feedback projections could exists and be used specifically for
conveying errors during learning; derivatives can be calculated through spike
trains 78. Nonetheless, the gravity and sheer amount of these concerns have 78 Brian N Lundstrom, Matthew H Higgs,

William J Spain, and Adrienne L Fairhall.
Fractional differentiation by neocortical
pyramidal neurons. Nature neuroscience,
11(11):1335–1342, 2008

pushed some researchers to look for alternative learning rules that do not
violate as many assumptions.

Classic Hebbian Learning

Classic Hebbian learning is perhaps the first neural learning rule ever out-
lined. It was popularized by psychologist Donald Hebb in a 1949 book 79 79 Donald Olding Hebb. The organization

of behavior: A neuropsychological theory.
Psychology Press, 2005

and is often described as the principle that “neurons that fire together, wire
together”. The idea behind this principle is that two neurons that often fire
at the same time end up forming more synapses between them. Eventually,
when the synapses between the two of them are sufficiently strong, the firing
of a single neuron is sufficient to trigger an action potential in the second
neuron. Such a mechanisms is generally compatible with the process of
long-term potentiation (LTP) as currently understood.

96

In this simple version, Hebbian learning can be described by Equation 36:

∆wi, j = ηxix j (36)

where η is the usual learning rate, wi, j is the weight of the synapses
between the i-th and the j-th neuron, and xi and x j are their outputs. It is
easy to say that, if both neurons fire, their activation x will be x > 0 and
therefore the synaptic weight w will increase. If, on the other hand, at least
one neuron is not firing, then their output is x = 0 and the synaptic weight will
not increase.

Equation 36 provides an intuitive way to capture simple forms of “asso-
ciative” learning, that is, conditioning or the acquisition of stimulus-response
associations.

Thus, classic Hebbian learning is unstable, as its growth is not compen-
sated by any mechanisms. Although helpful even in its current form, for most
pratical applications the basic Hebbian principles of Equation 36 needs to be
augmented with extensuions that dampen its unchecked growth, giving rise to
a variety of modified Hebbian rules.

Contrastive Hebbian Learning

One such rule is Contrastive Hebbian Learning (CHL 80). CHL takes place 80 Geoffrey E Hinton. Deterministic
boltzmann learning performs steepest
descent in weight-space. Neural computation,
1(1):143–150, 1989

in the same type of multi-layered network that is used by Backprop; only,
instead of being strictly feedforward, the network needs to have both feedfor-
ward and feedback projections between consecutive layers. This change in
the network’s architecture introduces interesting dynamics–and poses some
problems. Because the network has both feedback and feedforward projec-
tions, a single pass will not be sufficient to determine the network’s output.
Instead, in this case, the input neurons will need to be kept at their input
values while all the other neuron’s outputs are recalculated multiple times.
In analogy to what happens in electrophysiological experiments, the input
neurons are said to be clamped to their input values. The process of updating
the In CHL, learning between two neurons i and j takes place following the
simplest Hebbian rule:

∆wi, j = αxix j

As noted above, this updating rule is unstable. To account for this, CHL
assumes that learning take places in two different phases, a learning phase
and an unlearning phase. During the learning phase, the network is forced
to reproduce a target output response t, while during the unlearning phase
the network is free to converge to its actual response a. To force the network
to converge to the desired response t, the network’s output neurons are
clamped to their desired states, and the network is let to go through multiple
update phases until it settles while both the input and the output neurons are

97

clamped. The total update occurring on every synapse w is the difference of
the Hebbian updates between the two phases, i.e.:

∆wi, j = α(xt
ix

t
j− xa

i xa
j) (37)

where xt represents the output of a neuron when the the network is being
forced to reproduce the desired target t, and xa is the output of a cell in when
the network is let free to converge towards its own actual response.

Figure 49: Architecture of a recur-
rent neural network trained to solve
the XOR problem with Contrastive
Hebbian Learning

x1

x2

h1

h2

h3

y1

A network trained with CHL can learn the same patterns of a network
trained with backpropagation. As an example, we can use CHL to train a
small, three-layered neural network to solve the XOR problem. The network
has the same topology of the feedforward XOR network in Figure 44, and
consists of six neurons arranged in three layers 49. The only differences is
that, in this case, connections between layers are bidirectional, so that, for
every synapse connection neuron i to neuron j, a different synapse also exists
that connections j to i.

Figure 50 illustrates the results of training the network of Figure 49. The
network was trained with

Figure 50: Training a recurrent
network to solve the XOR problem
with Contrastive Hebbian Learning.
Left: Changes in the error value as
learning progresses; Right: Final
performance on the XOR problem.

Convergence and Energy Function

To understand how CHL works, it is necessary to first appreciate what drives
the dynamics of a network that includes both feedforward and feedback
projections. Such a network will cycle through multiple states, and converge
to a state in which the activity of all neurons will remains stable. It can be
shown that such a state can be defined as a local minimum for the network’s
energy E, a quantity defined as such:

E = −1
2

N

∑
i

N

∑
j

wi, jxix j (38)

When given appropriate inputs, the network will converge towards the
closest state with minimum energy. To train a recurrent network, therefore,
we need to reduce the energy associated with the target response until it is

98

as low as the level of energy of the actual response. This is equivalent to
minimizing an error function that corresponds to the difference between the
energy of the actual state and the energy of the actual state:

E = E(t)−E(a)

= −1
2

N

∑
i

N

∑
j

wi, jxt
ix

t
j−−

1
2

N

∑
i

N

∑
j

wi, jxa
i xa

j

We can therefore express learning as a form of gradient descent over this
error function. As in the case of perceptrons and backpropagation, we can
derive a learning algorithm by performing gradient descent over this error
function, and taking its negative derivative. The CHL equation (Eq. 37) ends
up being the result of this derivation process:

∆wi, j = −
∂E

∂wi, j

= −
∂

(
− 1

2 ∑
N
i ∑

N
j wi, jxt

ix
t
j−− 1

2 ∑
N
i ∑

N
j wi, jxa

i xa
j

)
∂wi, j

= −1
2
(xt

ix
t
j− xa

i xa
j)

≈ xa
i xa

j − xt
ix

t
j

Thus, both backpropagation and CHL are learning rules that can be
derived from gradient descent; they simply perform gradient descent on
different error functions. In CHL, the error function is the difference in
the energy of the desired target state and the energy of the actual state of
the network. The CHL equation works by reducing the energy of the state
corresponding to the target out t until it becomes lower that the energy of
the actual output a, at which point, the network would naturally converge
towards the target state. Because backpropagation is designed to work on
feedforward networks, it cannot use the difference in energy states as its error
function—feedforward networks have no meaningful definition of energy
since they are updated in a single pass and do cycle through different states.
Instead, the error function in backpropagation is defined as the distance
between the desired target output t and the actual one a. Figure 51 provides a
visual illustration of these differences.

In fact, it can be mathematically shown that CHL and Backpropagation
are equivalent, and problems solved with backpropagation can be also solved
with CHL 81. 81 Xiaohui Xie and H Sebastian Seung.

Equivalence of backpropagation and
contrastive hebbian learning in a layered
network. Neural computation, 15(2):441–
454, 2003

Oja’s Rule

Despite its advantages, CHL is still a form of supervised learning, and, as
such, needs a set of known examples and a supervising trainer to tell the

99

.

Figure 51: A comparison of back-
propagation and CHL. The figure
illustrates the energy values (blue
line) associated with different
possible states of the network,
including a target (green) and the
actual response (orange). CHL is
the derivative of the difference in
the the energy states, while back-
propagation is the derivative of
the difference between target and
actual responsesnetwork when a specific response should be learned or unlearned. The brain

must have, instead, some basic Hebbian mechanism that are both stable and
unsupervised.

One way to make Hebbian learning stable is to constrain the unbounded
growth of synapses. To contrain this growth, many algorithms have been
proposed that normalize synaptic weights. One of such methods is Oja’s rule
82, in which synaptic weights are updated according to the equation: 82 Erkki Oja. Simplified neuron model as a

principal component analyzer. Journal of
mathematical biology, 15(3):267–273, 1982

∆wi, j = y j(yi−wi, jy j) (39)

Like in Hebbian learning, in this rule, synaptic weights grow in proportion
to both yi and y j. The term wi, jy j, however, penalizes the growth of the
synaptic weight beyond 1. It also favors the growth of synaptic weights in
proportion to the frequency at which neurons i and j fire together in the
training sample. These characteristics make Oja’s rule especially apt for
extracting stable patterns in the data, that is, combinations of neurons that are
commonly active in the data. In fact, it can be shown that a neuron trained
with Oja’s rule learns to extract the first principal component of its data.

To see an application of Oja’s rule, let us consider again the digit recog-
nition problem. Unlike the clear-cut digits of Figure 39, real hand-written
digits have considerable variations from each other. As an example, Figure 52
provides fifteen examples from the MNIST database 83. 83 Yann LeCun. The mnist database of

handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998

Despite their obvious relative differences, the fifteen digits bear some clear
similarity between them: in all cases the “3” is drawn following the same
basic trajectory, which makes some pixels in an arc in the top, an arc in the
bottom,and in the very center to be more likely to show up in the digit. A
network trained with Oja’s rule would be able to understand this pattern and
extract the commonalities between all of them.

Figure 53 shows the learning progression of a network trained with Oja’s
rule on the fifteen digits of Figure 52. The network is made of 28x28 input
neurons connected to a single output neurons y with a linear activation
function—that is, a perceptron. In each training epoch, all of the fifteen

100

Figure 52: Examples of handwrit-
ten “3”s from the MNIST database

exemplars are presented once. When one pattern is presented, the activation
of the input neurons is set to the values of the corresponding pixels, the
activation of the output unit is calculated, and the synapses between input and
output units are calculated according to Equation 39. As Figure 53 shows,
the network is quickly learning the shape of a prototypical “3”, extracted
from the training examples. As a result, the output unit would be maximally
sensitive to any digit that most resembles a “3”.

Figure 53: A network trained
with Oja’s rule over a variety of
hand-written digits (Figure 52 has
learned their common features

Autoassociators and Memory

All of the types of networks we have seen so far have the characteristic of
being heteroassociative: they learn an association between a specified input
and its desired output.

This type of networks suffer from problems. To see an example, let’s
consider what would happen if we train the same network of Figure X on
only half of the patters

101

Hopfield Networks

Hopfield networks are a particular type of autoassociator networks introduced
by physicist John Hopfield in 1982 84. 84 John J Hopfield. Neural networks and

physical systems with emergent collective
computational abilities. Proceedings of the
national academy of sciences, 79(8):2554–
2558, 1982

The Hopfield network is one of the simplest and oldest types of neural
networks. It remains, however, one of the most influential and among those
with the deepest implications for the cognitive neurosciences. A Hopfield
network is made of N independent neurons, each of which is connected to all
other neurons, as in Figure 54. Thus, a Hopfield network has no “layers” and
no internal subdivisions, and all neurons are on equal footing.

Figure 54: An example of a Hop-
field network, with N = 4 neurons
fully interconnected with each
other.

x1

x2

x3

x4

There are no self-connections, that is, neurons do not project back to
themselves. In addition, the connections are symmetric, so that wi, j = w j,i.
Finally, each neuron is a binary unit, whose output is either +1 or −1 and
whose activation function is:

yi =

−1 if ∑ j wi, j x j ≤ 0

+1 if ∑ j wi, j x j > 0
(40)

Learning in a Hopfield Network

Learning in a Hopfield network happens in a single pass. Specifically, when
the network is in a specific state that needs to be learned, its synapses are
updated using the Hebbian learning rule:

wi, j = w j,i = xi x j

What makes this types of networks unique is that, once a specific pattern
has been memoried, the network can memorize an additional one by simply
re-applying the Hebbian learning rule above. Unlike feedforward networks or
recurrent networks trained with CHL, Hopfield networks can learn new things
without catastrophic interference.

State Transitions in a Hopfield Network

Now, to understand what happens, we need to refer back to. At any point
in time, the state of each neuron might change, flipping from −1 to +1 as
the states of all other neurons in the network change. These changes do not
(usually) continue indefinitely; the network continues to update its state until
a stable pattern of neuronal activity is found.

These changes do not happen randomly. In his seminal paper, Hopfield
showed that the network attempts to minimize its energy function. The
energy function was defined in Eq. 38. Because, in a Hopfield network, the
synapses are symmetric, we can redefine the energy function as such:

E =
1
2

N

∑
j>i

wi, jxix j (41)

102

Figure 55: When presented with
a pattern of neural activity, a Hop-
field network will spontaneous
switch to a lower-energy one until
a stable pattern is found. At this
point, the network has reached a
stable configuration. This config-
uration coincides with one of the
learned patterns.

Hopfield Networks and the Hippocampus

As it turns out, Hopfield networks are a simple but really good model of how
the human brain can form episodic memories. To see how, let’s revisit one of
our favorite circuits, the hippocampus.

Recurrent Neural Networks

Recurrent Networks

1. Simple Recurrent Network, or Elman network. As the hidden layer
chains two consecutive epochs (and therefore two consecutive stimuli), it
provides a way to chain two consecutive events in time. Like the backup
term in RL, this allows for propagating back prediction errors from
epoch t to t 1. Unlike RL, however, the hidden layer does not suffer
from temporal difference methods’ inability to overcome non-Markov
environment and long-distance dependencies between stimuli. This is
because the hidden layer, contains a fading memory of all previous epoch
presentations and, although stimuli presented much earlier are destined
to be much more faintly represented, they are still marginally present in
the hidden layer, and their learning is still reflected in its synaptic layers.
To draw a parallel with RL, the hidden layer reflects elements of both
the one-step backup term in the RPE (the copying of the layer from one
epoch to the next) and of eligibility traces (the presence of fading traces of
previous epochs).

2. Jordan network

3. Long-Term Short-Term Memory networks. Recurrent networks provide
a powerful way to learn temporal dependencies across stimuli. Yet, they
suffer from some severe disadvantages. The main one is the problem
of the so-called vanishing gradient: It is true that the network can learn
remote temporal dependencies, but the more distant the dependency
between two stimuli, the more the original stimulus would have faded
from the hidden layer. This problem is, in fact, serious enough that even
relatively short distance dependencies might require many million epochs
of training to be learned.

4. Natural Language Processing

5. Application: Prefrontal Cortex, meta-learning.

Bibliography

[1] Paul M Fitts. The information capacity of the human motor system
in controlling the amplitude of movement. Journal of Experimental
Psychology, 47(6):381, 1954.

[2] William E Hick. On the rate of gain of information. Quarterly Journal of
Experimental Psychology, 4(1):11–26, 1952.

[3] Ray Hyman. Stimulus information as a determinant of reaction time.
Journal of experimental psychology, 45(3):188, 1953.

[4] David Marr. Vision: A computational investigation into the human
representation and processing of visual information. W. H. Freeman &
Company, 2010.

[5] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari
with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[7] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[8] Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate
of prediction and reward. Science, 275(5306):1593–1599, 1997.

[9] Richard S Sutton. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9–44, 1988.

[10] A David Redish. Addiction as a computational process gone awry.
Science, 306(5703):1944–1947, 2004.

[11] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using
connectionist systems, volume 37. University of Cambridge, Department
of Engineering Cambridge, UK, 1994.

106

[12] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine
learning, 8(3-4):279–292, 1992.

[13] Andrew G Barto. Adaptive critics and the basal ganglia. Models of
information processing in the basal ganglia, 215, 1995.

[14] Yuji Takahashi, Geoffrey Schoenbaum, and Yael Niv. Silencing the
critics: understanding the effects of cocaine sensitization on dorsolateral
and ventral striatum in the context of an actor/critic model. Frontiers in
neuroscience, 2:14, 2008.

[15] Henry H Yin and Barbara J Knowlton. The role of the basal ganglia in
habit formation. Nature Reviews Neuroscience, 7(6):464–476, 2006.

[16] Richard S Sutton. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming. In Machine
learning proceedings 1990, pages 216–224. Elsevier, 1990.

[17] Edward C Tolman. Cognitive maps in rats and men. Psychological
review, 55(4):189, 1948.

[18] Roger Ratcliff. A theory of memory retrieval. Psychological review,
85(2):59, 1978.

[19] Martijn J Mulder, Eric-Jan Wagenmakers, Roger Ratcliff, Wouter
Boekel, and Birte U Forstmann. Bias in the brain: a diffusion model anal-
ysis of prior probability and potential payoff. Journal of Neuroscience,
32(7):2335–2343, 2012.

[20] Sebastian Musslick, Amitai Shenhav, Matthew M Botvinick, and
Jonathan D Cohen. A computational model of control allocation based
on the expected value of control. In The 2nd multidisciplinary conference
on reinforcement learning and decision making, 2015.

[21] Scott D Brown and Andrew Heathcote. The simplest complete model
of choice response time: Linear ballistic accumulation. Cognitive
psychology, 57(3):153–178, 2008.

[22] Adam Reeves, Nayantara Santhi, and Stefano DeCaro. A random-ray
model for visual search and object recognition. Spatial Vision, 18:73–83,
2005.

[23] Larry R Squire. Memory systems of the brain: a brief history and current
perspective. Neurobiology of learning and memory, 82(3):171–177,
2004.

[24] John R Anderson and Robert Milson. Human memory: An adaptive
perspective. Psychological Review, 96(4):703, 1989.

107

[25] John R Anderson. The adaptive character of thought. Lawrence Erlbaum
Associates, 1990.

[26] John R Anderson. Retrieval of information from long-term memory.
Science, 220(4592):25–30, 1983.

[27] John R Anderson, Lynne M Reder, and Christian Lebiere. Working
memory: Activation limitations on retrieval. Cognitive psychology,
30(3):221–256, 1996.

[28] John R Anderson, Daniel Bothell, Michael D Byrne, Scott Douglass,
Christian Lebiere, and Yulin Qin. An integrated theory of the mind.
Psychological review, 111(4):1036, 2004.

[29] Hermann Ebbinghaus. Über das gedächtnis: untersuchungen zur
experimentellen psychologie. Duncker & Humblot, 1885.

[30] John R Anderson and Lael J Schooler. Reflections of the environment
in memory. Psychological science, 2(6):396–408, 1991.

[31] John R Anderson and Gordon H Bower. Human Associative Memory.
Psychology Press, 2014.

[32] John R Anderson. How can the human mind occur in the physical
universe? Oxford University Press, 2009.

[33] Richard M Shiffrin and Mark Steyvers. A model for recognition memory:
Rem—retrieving effectively from memory. Psychonomic bulletin &
review, 4(2):145–166, 1997.

[34] Douglas L Hintzman. Minerva 2: A simulation model of human memory.
Behavior Research Methods, Instruments, & Computers, 16(2):96–101,
1984.

[35] Allen Newell and P Rosenbloom. Mechanisms of skill acquisition. In
John Robert Anderson, editor, Cognitive skills and their acquisition,
chapter 1, pages 1–56. Lawrence Erlbaum Associates, 1981.

[36] Philip I Pavlik Jr and John R Anderson. Practice and forgetting effects on
vocabulary memory: An activation-based model of the spacing effect.
Cognitive science, 29(4):559–586, 2005.

[37] John R Anderson, Jon M Fincham, and Scott Douglass. Practice and
retention: a unifying analysis. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 25(5):1120, 1999.

[38] Philip I Pavlik and John R Anderson. Using a model to compute the
optimal schedule of practice. Journal of Experimental Psychology:
Applied, 14(2):101, 2008.

108

[39] Florian Sense, Friederike Behrens, Rob R Meijer, and Hedderik van
Rijn. An individual’s rate of forgetting is stable over time but differs
across materials. Topics in cognitive science, 8(1):305–321, 2016.

[40] Timothy T Rogers, Matthew A Lambon Ralph, Peter Garrard, Sasha
Bozeat, James L McClelland, John R Hodges, and Karalyn Patterson.
Structure and deterioration of semantic memory: a neuropsychological
and computational investigation. Psychological review, 111(1):205,
2004.

[41] Christian Lebiere and John R Anderson. A connectionist implementation
of the act-r production system. In Proceedings of the fifteenth annual
conference of the Cognitive Science Society, pages 635–640, 1993.

[42] John R Anderson. The architecture of cognition. Lawrence Erlbaum
Associates, 1983.

[43] Allan M Collins and Elizabeth F Loftus. A spreading-activation theory of
semantic processing. Psychological review, 82(6):407, 1975.

[44] Alan Baddeley. Working memory. Science, 255(5044):556–559, 1992.

[45] Alan D Baddeley and Robert H Logie. Working memory: The multiple-
component model. 1999.

[46] Alan Baddeley. Working memory. Current biology, 20(4):R136–R140,
2010.

[47] Michael J Kane, M Kathryn Bleckley, Andrew RA Conway, and
Randall W Engle. A controlled-attention view of working-memory
capacity. Journal of experimental psychology: General, 130(2):169,
2001.

[48] Gregory C Burgess, Jeremy R Gray, Andrew RA Conway, and Todd S
Braver. Neural mechanisms of interference control underlie the relation-
ship between fluid intelligence and working memory span. Journal of
experimental psychology: general, 140(4):674, 2011.

[49] Larry Z Daily, Marsha C Lovett, and Lynne M Reder. Modeling
individual differences in working memory performance: A source
activation account. Cognitive Science, 25(3):315–353, 2001.

[50] John Robert Anderson. Retrieval of propositional information from
long-term memory. Cognitive psychology, 6(4):451–474, 1974.

[51] John R Anderson and Lynne M Reder. The fan effect: New results and
new theories. Journal of Experimental Psychology: General, 128(2):186,
1999.

109

[52] Maarten van der Velde, Florian Sense, Jelmer P Borst, Leendert van
Maanen, and Hedderik van Rijn. Capturing dynamic performance in a
cognitive model: Estimating act-r memory parameters with the linear
ballistic accumulator. Topics in Cognitive Science, 14(4):889–903, 2022.

[53] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, 1943.

[54] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

[55] Elie L Bienenstock, Leon N Cooper, and Paul W Munro. Theory for the
development of neuron selectivity: orientation specificity and binocular
interaction in visual cortex. Journal of Neuroscience, 2(1):32–48, 1982.

[56] Scott E Fahlman and Christian Lebiere. The cascade-correlation learning
architecture. Technical report, Carnegie-Mellon University, School of
Computer Science, Pittsburgh, PA, 1990.

[57] Yann LeCun. The mnist database of handwritten digits. http://yann.
lecun. com/exdb/mnist/, 1998.

[58] Marvin Minsky and Seymour A Papert. Perceptrons: An introduction to
computational geometry. MIT press, 2017.

[59] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536,
1986.

[60] George Cybenko. Approximation by superpositions of a sigmoidal
function. Mathematics of control, signals and systems, 2(4):303–314,
1989.

[61] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[62] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Advances in
neural information processing systems, 25, 2012.

[63] Brian N Lundstrom, Matthew H Higgs, William J Spain, and Adri-
enne L Fairhall. Fractional differentiation by neocortical pyramidal
neurons. Nature neuroscience, 11(11):1335–1342, 2008.

[64] Donald Olding Hebb. The organization of behavior: A neuropsychologi-
cal theory. Psychology Press, 2005.

110

[65] Geoffrey E Hinton. Deterministic boltzmann learning performs steepest
descent in weight-space. Neural computation, 1(1):143–150, 1989.

[66] Xiaohui Xie and H Sebastian Seung. Equivalence of backpropaga-
tion and contrastive hebbian learning in a layered network. Neural
computation, 15(2):441–454, 2003.

[67] Erkki Oja. Simplified neuron model as a principal component analyzer.
Journal of mathematical biology, 15(3):267–273, 1982.

[68] John J Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national academy
of sciences, 79(8):2554–2558, 1982.

	Introduction
	I Algorithmic Models
	Reinforcement Learning
	Accumulator Models of Decision-Making
	Models of Long-Term Memory

	II Neural Networks
	Perceptrons and Feedforward Networks
	Hebbian Learning and Autoassociators
	Recurrent Neural Networks
	Bibliography

