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1. Introduction 

Management of fire-adapted forests on public lands across the western United States is focused on 
restoration of resilience in areas that have been fire-suppressed, cut and replanted, or otherwise 
degraded (North et al. 2009). Typically restoration work is done through a combination of me-
chanical treatment and prescribed fire (Stephens et al. 2013, North et al. 2009, Stephens & Ruth 
2005). Planning for restoration treatments has largely been guided by ground-based resource in-
ventory; however, there is considerable interest in and action toward using remote sensing tools to 
supplement field data: this is beneficial both for defraying the high cost of field work as well as 
for enabling larger-scale analyses that can provide landscape context (Kane et al. 2013, 2014). 
Airborne LiDAR has emerged as a key remote sensing technology (Wulder et al. 2008, Reutebuch 
et al. 2005) that has started to see usage in forest landscape restoration (Kane et al. 2014, Churchill 
et al. in prep). In forestry, LiDAR was initially used primarily for inventory (Parker & Evans 2009, 
Means et al. 2000, Næsset 1997) but it was quickly realized that the expansive high-resolution 
structural measurements could also be used to answer ecological questions (Kane et al. 2011, 
Falkowski et al. 2009, Martinuzzi et al. 2009, Hyde et al. 2005). Ecological restoration brings 
together forestry – inventory, silviculture, operations, and economics – with forest ecology – un-
derstanding the relationships between plant communities, wildlife, microbiota, and abiotic factors. 
Since each of these sub-fields of LiDAR research is relatively new, their synthesis is decidedly 
nascent. 
In this case study we pilot the use of LiDAR for informing the silvicultural aspects of ecological 
forest restoration at the scale of individual treatment units. In order to work at this relatively fine 
scale (<100 ac; <40 ha) we process the LiDAR data using individual tree detection. This process 
analyzes the geometry of the LiDAR point cloud and picks out individual tree crowns. However, 
since many tree crowns – especially smaller trees – are hidden from aerial view by the dominant 
canopy layer, we consider the detected trees to be tree-approximate objects (TAOs) (Jeronimo et 
al. in review). TAOs are dominated by a single tree that was well-illuminated by the LiDAR in-
strument, but may also encompass a few subordinate trees that cannot be individually delineated. 
We expect that using LiDAR will provide several benefits that would not otherwise be possible. 
Complete coverage of LiDAR data allows for an excellent overall view of stand structural condi-
tions at a higher level of detail than is possible with only ground-based data collection. This cov-
erage can help elucidate landscape contexts and enable understanding of the varying patterns of 
different conditions within and between stands. LiDAR also makes it possible to visualize simu-
lated treatments in a spatially explicit way, so that multiple approaches can be virtually experi-
mented with before settling on a final strategy. 
The purpose of this report is to use TAOs as a basis for assigning treatment prescriptions to resto-
ration units. We use TAOs to identify “backbone trees,” representing large and old trees within 
the area that will serve as biological anchors for the treatment. We then look at the clumping and 
opening patterns of the backbone trees, along with the density of forest cover in smaller trees, to 
determine general treatment guidelines in terms of density and clumping pattern targets for each 
unit. Finally, we suggest additional fieldwork that would be required to complement the LiDAR 
data and develop a final prescription.  
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2. Methods 
2.1 Study area 

We carried out this study in the Annie Creek Exten-
sion (commonly known as the “Panhandle”) of 
Crater Lake National Park (CRLA) (Figure 1). When 
the Panhandle was added to CRLA in 1932, one goal 
was to protect its old-growth mixed-conifer forests, 
which had been disappearing on neighboring lands. 
Since that time the forests of the Panhandle have 
been excluded from fire and have correspondingly 
become overly dense and laden with fuels. Under 
CRLA’s Fire Management Plan (2012) and Resource 
Management Plan (1999), restoration is a high prior-
ity in the park, and the Panhandle’s fire-adapted eco-
system is specifically targeted for restoration. 
Specific restoration objectives in the Panhandle are 
to improve survivorship of old, shade-intolerant 
trees, reduce the risk of high-severity fire, increase 
structural diversity, and promote regeneration of 
shade-intolerant, fire-tolerant conifer such as pon-
derosa pine (PNW Cooperative Agreement 2014). 
The Panhandle lies at 4330-4820 ft (1320-1470 m) elevation and is bisected by Annie Creek, which 
runs north-south. The area experiences a warm-summer Mediterranean climate. During the 2001-
2010 normal period, summer high temperatures were 77 F (25 C), winter lows were 22 F (-5 C), 
and 32.2 in. (818 mm) of precipitation fell annually, 26.2 in. (665 mm) of which fell as snow. 
There is a long dry period during the summer months, during which there is typically less than 2 
in. (50 mm) of precipitation (ClimateWNA 2016). The soils of the Panhandle are primarily vol-
canic, formed of pumice and ash flows from Mt. Mazama (NRCS 2016). 
2.2 LiDAR acquisition 

LiDAR data were acquired on August 23-September 5, 2010 by Watershed Sciences, Inc. of Cor-
vallis, Oregon. Data were acquired using a combination of Leica ALS60 sensors and dual-mounted 
Leica ALS50 Phase II sensors. These systems were flown at 2953 ft (900 m) and 4265 ft (1300 m) 
above ground level with scan angles of ±14° and ±13°, respectively. Both instruments were able 
to record up to 4 returns per pulse with pulse rates >83 kHz. Flight lines were flown with >50% 
sidelap yielding an average pulse density of 0.78 ft-2 (8.39 m-2). Return location accuracy was 0.15 
ft (0.05 m) RMSE. The vendor created a bare-earth ground model using TerraScan and TerraMod-
eler software (TerraSolid Oy, Helsinki, Finland). 
2.3 LiDAR data processing 

LiDAR data were processed using FUSION LTK (McGaughey 2016) to create the canopy height 
model and delineate tree-approximate objects and using R version 3.3.2 (R Core Team 2016) to 
analyze tree height distributions and clumping and opening patterns. 

 
Figure 1 Crater Lake National Park, with Annie 
Creek Extension (“Panhandle”) circled in red and 
location in Oregon inset. 
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2.3.1 Canopy height model 

A canopy height model (CHM) is a 3-dimensional representation of the forest canopy surface with 
respect to the ground. A CHM was created for the Panhandle using the LiDAR point cloud nor-
malized by the vendor-delivered ground model. The CHM was created as a 2.46 ft (0.75 m) reso-
lution raster in which each cell took on the z-value of the highest LiDAR return in that cell. The 
CHM was smoothed with a 3×3 mean filter to remove noise. 
2.3.2 Tree-approximate objects 

Individual tree crowns were detected using the FUSION TreeSeg tool, an implementation of the 
watershed transform (Vincent & Soille 1991). Detected trees were taken to be tree-approximate 
objects (TAOs), or small groups of one or more trees including at least one canopy dominant (Je-
ronimo et al., in review). Each TAO was assigned a georeferenced xy-location and a height corre-
sponding to the highest LiDAR return in the TAO’s crown. 
Jeronimo et al. (in review) examined the patterns of accuracy in LiDAR individual tree detection 
and concluded that most canopy dominant trees – that is, those with direct visibility from the sky 
– are correctly identified, while most subdominant trees are not. In particular, trees taller than 60% 
of the local maximum height were usually detected (Figure 2). This indicates that using TAOs to 
describe patterns of larger trees, or to summarize stand metrics driven by larger trees, should have 
good accuracy. 
 
 

 

Figure 2 Accuracy of LiDAR individual tree detection by relative height. The tallest trees at any 
given site are much more likely to be detected than the shorter trees. Trees taller than 60% of the 
local maximum height have an 80% or better chance of detection. Since the larger number of trees 
is small, it is difficult to accurately measure overall density using individual tree detection. How-
ever, since the majority of basal area is in the larger trees this metric can be measured well. 
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2.3.3 Backbone trees 

Legacy trees, that is, old trees that established before significant impacts of Euro-American settle-
ment, are typically the backbone of restoration prescriptions (Franklin et al. 2013, Agee & Skinner 
2005). We set out to identify legacy trees by searching for the tallest TAOs within the LiDAR 
footprint. However, because of infilling by fast-growing species such as white fir (Merschel et al. 
2014, Dolph et al. 1995) and because some old trees are small (Van Pelt 2008), a height cutoff is 
insufficient to truly identify legacy trees. Therefore, we instead focused on “backbone trees.” 
Backbone trees represent the largest trees, which should comprise the majority of the old trees 
along with a few of the largest younger trees. Backbone trees will generally be retained in a resto-
ration treatment; however, some of the younger shade-tolerant backbone trees may be removed to 
mitigate crown fire risks. Conversely, some small old trees that do not qualify as backbone trees 
will certainly be retained. 

To identify backbone TAOs we first divided 
the Panhandle by soil type (Figure 3), since at 
fine scales soil characteristics determine max-
imum tree height (Carmean 1968). Then we 
calculated the 80th percentile TAO height for 
each soil type and selected trees taller than 
that threshold to be backbone TAOs. 
2.3.4 Tree clumping 

We used the point pattern of the xy-locations 
associated with each TAO to determine 
clumping patterns across the Panhandle. Each 
TAO was assigned membership in a clump 
based on a 20 ft (6 m) limiting distance, as in 
Churchill et al. (2013). TAOs with no neigh-
bors within 20 ft were considered to be indi-
vidual trees. Following Churchill et al. (2013) 
clumps were binned into size classes: small 
(2-4 TAOs), medium (5-9 TAOs), large (10-
14 TAOs), and super (15-30 TAOs). 
 
 
 

2.3.5 Open space 

We quantified the distribution of intertree space, that is, all open space between canopies including 
both large openings and small, snaky corridors. Following Churchill et al. (2013) and Lydersen et 
al. (2013), we used the empty space function F(t). The F(t) transform lays a grid over the analysis 
area – we used a 2.46 ft (0.75 m) grid to match our CHM and other raster products – and calculates 
the distance from each grid cell to the nearest tree. In our case, we used TAO high points in lieu 
of tree positions. The distribution of these distance values gives a measure of the amount of open 
space in different positions in relation to the canopy. We classified the F(t) values into 9.84 ft (3 
m) bins up to a distance of 80 ft (24 m). 

 

Figure 3 Soil units in the Crater Lake Panhandle 
(NRCS 2016). 
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2.4 Regressions 

In order to translate stand structural conditions measured from TAOs into a form that would be 
usable for silviculturists, we estimated diameter at breast height (DBH) and basal area (BA) for 
the dominant member of each TAO. We created height-diameter equations based on compiled plot 
data from 133 Forest Service Forest Inventory and Analysis plots nearby CRLA (FIA 2016). We 
derived the following equation (r2 = 0.81, p < 0.0001, n = 4585): 

 𝐷𝐵𝐻 = 0.2676 × 𝐻𝑒𝑖𝑔ℎ𝑡 − 2.9707,  (Eq. 1) 

where 𝐷𝐵𝐻 is diameter at breast height in inches and 𝐻𝑒𝑖𝑔ℎ𝑡 is total tree height in feet (Figure 
4). 
Using this height-diameter relationship we predicted DBH for each TAO. It is important to note 
that the TAOs do not represent all trees in the stand: many smaller trees are hidden by the canopies 
of larger trees (Jeronimo et al., in review). However, since the backbone trees comprise the largest 
individuals they should be detected with high accuracy, and the DBH distributions for the back-
bone trees should reflect the true distributions well. 

 

Figure 4 Linear regression relationship between height and diameter for 133 Forest Inventory 
and Analysis plots surrounding Crater Lake National Park (FIA 2016), including all conifer 
species. 
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Figure 5 Reference conditions from 1920’s survey of former Klamath Indian Reservation (Hagmann 
et al. 2013). Light gray points (All transects) represent conditions for all cruise transects. Dark gray 
points (WF transects) represent conditions from cruise transects containing any white fir. Light gray 
polygon (WF envelope) is the convex hull of the WF transects, representing the range of stocking 
conditions present on the historical landscape. Dark gray polygon (WF 80% envelope) is the convex 
hull of the 80% of the WF transects with the least residual deviance from the mean, representing the 
core historical envelope where most of the transects existed. 

 

Figure 6 Reference conditions for pattern from 57 stem map plots reconstructed to the 1890’s (Churchill et al., in press). 
Names in legend refer to national forests where reconstruction took place; an envelope is presented for each sampled 
forest. Left panel gives conditions for pattern in terms of proportions of trees in clumps of different sizes. Right panel 
gives conditions for open space in terms of proportion of area at various distances from the nearest tree. See Churchill et 
al. (2013) for interpretation details. 
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2.5 Reference conditions 

In order to develop ecologically appropriate targets for the restoration treatments we looked to two 
reference datasets describing historical conditions in similar forests in the region. First, we looked 
at historical ranges in density (trees per acre, TPA) and basal area (BA) using timber cruise transect 
data from the 1920s on the former Klamath Indian Reservation (Hagmann et al. 2013). We selected 
cruise transects from that dataset where white fir was present, since white fir is the climax shade-
tolerant species in the Panhandle forests. We plotted TPA versus BA and took the convex hull of 
this scatterplot to represent the historical envelope of stocking. We then took the convex hull of 
the subset of the 80% of transects with the smallest residual deviance from the mean to represent 
the core historical envelope (Figure 5). The overall envelope delineated the realm of historical 
conditions while the core envelope delineated the most common conditions. 
Using a second set of reference conditions, we looked at historical spatial pattern using data from 
reconstructed stem map plots across the dry forests of central and eastern Oregon and Washington 
(Churchill et al., in press). These data are divided into sets representing several National Forests: 
the Colville, Okanogan-Wenatchee, Malheur, Fremont-Winema, and Rogue-Siskiyou. We visual-
ized the historical range of spatial patterns on each of these forests by producing box plots showing 
proportion of trees in each clump size and opening class for each forest (Figure 6). We interpreted 
the historical envelopes in light of our knowledge about the biophysical environment of the differ-
ent national forests relative to that of the Panhandle. 

2.6 Prescription recommendation devel-

opment 

We defined prescription recommendations 
on the basis of polygonal units, which were 
previously delineated using photo interpre-
tation and supplied by the National Park 
Service (NPS) (Figure 7). Because goals for 
this restoration project included preserving 
old trees all prescriptions called for com-
plete retention of legacy structures, and 
since legacy structures were present 
throughout the project area all treatments 
options were necessarily partial cuts. With 
the goal of increasing structural diversity, a 
spacing-based treatment would not have 
been sufficient (Churchill et al. 2013). 
Therefore treatment options were catego-
rized as either (1) radial release (RR), 
where all most or all trees within twice the 
dripline distance of legacy structures are re-
moved, or (2) variable density thin (VDT), 
where trees are thinned generally from be-
low and stocking targets vary throughout 

 

Figure 7 Treatment unit numbers and locations su-
perimposed on a canopy height model. 
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the treatment unit. We also looked for opportunities to leave untreated “skip” areas and create large 
openings within the units to increase spatial heterogeneity and provide habitat favorable for the 
regeneration of fire-tolerant pines (Franklin et al. 2013). 

We developed prescription recommendations from the starting point of leaving all backbone trees 
and removing all other trees. Supposing this canonical treatment, we calculated residual density 
(trees per acre, TPA), basal area (BA), clump size distribution in terms of the proportion of clumps 
in each size class (individual, small, medium, large, and super), and the open space distribution in 
terms of the distribution of F(t) values in 9.8 ft (3 m) bins. We overlaid these data on the reference 
condition plots to visualize if and how the restoration units were departed from historical condi-
tions. The prescription recommendation for non-backbone trees was then developed by calculating 
the additional TPA to retain and the target pattern for retention in order to move each unit toward 
or within the reference envelope. The particular values for TPA and clump targets were chosen 
not just to satisfy reference condition goal but also to be realistic given the current conditions in 
the stand and to encourage landscape-level variability. 

Along with the quantitative recommendations for stocking and clumping, we also developed qual-
itative recommendations for openings and non-commercial treatment. We classified TAOs into 
three classes using a merchantability cutoff of 9 in. DBH: backbone trees, merchantable non-back-
bone trees, and non-merchantable trees. We mapped these trees and visually interpreted the pat-
terns, looking for opportunities to create large openings and, in some cases, recommend pre-com-
mercial thinning (PCT). 
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3. Results 

3.2 Backbone trees 

Height cutoffs for backbone trees were relatively consistent across soil types, except that riparian 
areas along Annie Creek had higher thresholds than non-riparian (Table 1). To validate these 
thresholds, we compared the 113 ft (34 m) cutoff used over the majority of the area to distributions 
of tree height by age class using plot data from Sierra Nevada mixed-conifer forests (Jeronimo et 

 

Figure 8 Distributions of tree heights by age class in a Sierra Nevada mixed-conifer forest. 
Young/mature refers to trees younger than 150, old/very old refers to trees older than 150. The 113 ft 
cutoff proposed in this study captures 66% of the old trees and 6% of the young trees in this distribu-
tion. Data from Jeronimo et al. (in review). 

Table 1 Soil characteristics, including height threshold used for determining backbone TAOs. AWC = 
available water content in the first 6 ft of the soil. Data from NRCS (2016). 

Soil unit Acres Prop. 
Area 

Landform Parent material AWC 
(in) 

Backbone 
cutoff (ft) 

Anniecreek-Stirfry-
Riverwash 

69 0.07 Stream 
terrace 

Pumice and ash 7.2 136 

Collier-Badlands 111 0.11 Ashflow Ash and cinders 7.1 141 

Collier 244 0.23 Ashflow Ash and cinders 7.1 114 

Maklak 566 0.54 Ashflow Pumice and ash 6.2 113 

Lapine-Oatman 49 0.05 Ashflow Ash and pumice 6.2 114 
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al., in review). Though in a different geographic area, this dataset sampled forests supporting sim-
ilar species composition. These trees were measured for height and classified by age, including 
classes young (<80 yr), mature (80-150 yr), old (150-250 yr), and very old (>250 yr). These data 
support the 113 ft cutoff, suggesting that 94.5% of young and mature trees are less than 113 ft in 
height, while 66.7% of old and very old trees are greater than or equal to 113 ft in height (Figure 
8). 
3.1 Tree-approximate object metrics 

TAO heights ranged from 6.56 ft (2 m) to 204.6 ft (62.4 m). Corresponding predicted DBHs ranged 
from 0.5 in. to 51.8 in. (1.3 to 131.6 cm). For backbone TAOs, predicted DBHs ranged from 27.4 
in. to 51.8 in. (69.6 to 131.6 cm). 
Because of LiDAR’s difficulty with delineating small trees, we calculated unit-wise TPA for back-
bone TAOs separately from non-backbone TAOs, and we calculated BA only for backbone TAOs. 
We have high confidence in the backbone TAO metrics and lower confidence in the non-backbone 
TAO metrics. The non-backbone TAO metrics can still be instructive; however, they must be in-
terpreted with care. Backbone TAO density ranged from 5.9 TPA (14.6 trees ha-1) on unit 1300 to 
32.5 TPA (80.3 trees ha-1) on unit 0100. The range of backbone BA was 29.7 to 243.6 ft2 ac-1 (6.8 
to 55.9 m2 ha-1), again on units 1300 and 0100 respectively. Non-backbone TAO density ranged 
from 27.9 TPA (68.9 trees ha-1) on unit 0100 to 90.1 (222.5 trees ha-1) on unit 1300.  

 

Figure 9 Comparison between spatial pattern reference envelope (pooled distribution of all 57 recon-
struction plots, see Figure 6) and distribution of patterns on CRLA units supposing a canonical treat-
ment in which all backbone trees are retained and all others are removed. Under this treatment, CRLA 
units would have many more individuals and many fewer medium and large clumps, along with more 
area in small intertree spaces and less area in large openings. 
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Of the non-backbone trees, between 20.5% and 
94.6% were predicted to be of merchantable size 
(≥9 in. [22.9 cm] DBH), with ≥70% merchanta-
bility on 63% of the units (Table 2). 
3.2 Clump-opening patterns 

Under the canonical treatment (retain all back-
bone trees, remove all else), clumping patterns 
showed a majority of TAOs as individuals and 
members of small clumps, with less than 4% of 
TAOs as members of medium and large clumps 
(Figure 9a). At the unit scale, 39-76% of TAOs 
were individuals, 24-55% of TAOs were in 
small clumps, 0-11% of TAOs were in medium 
clumps, 0-3% of TAOs were in large clumps, 
and no TAOs were in super clumps (>30). Aver-
aged over all units, 60% of TAOs were individ-
uals, 36% were in small clumps, 3.8% were in 
medium clumps, and <1% were in large clumps. 
Compared to the reference distributions the av-
erage values were outside of the envelope: there 
were more individuals and fewer medium, large, 
and super clumps after the canonical treatment 
than on the reference sites (Figure 9a). 
Under the same treatment, opening patterns 
showed a majority (78%) of the area as being 
less than 20 ft (6 m) from a TAO point. On av-
erage, 15% of the area was between 20 and 30 ft 
(6-9 m) away from a TAO point and just 7% of 
the area was farther than 30 ft (9 m). In 14 of 19 
units more than 90% of the area was less than 30 
ft (9 m) away from a TAO point. Compared to 
the reference distributions the average values 
were higher in the first class (0-10 ft [0-3 m]), 
lower in the third class (20-30 ft [6-9 m]), and 
slightly lower in all classes larger than 30 ft (9 
m) (Figure 9b). There was somewhat less open 
space suitable for early-seral habitat and pine re-
generation after the canonical treatment than on 
the reference sites. 
3.3 Prescriptions 

We did not prescribe any RR treatments. We 
found that RR typically either resulted in (1) pat-
terns that were more evenly spaced than any-
thing appearing in the reference envelope or (2) 

Table 3 Density and clumping level targets for 
treatment units. Non-backbone retain TPA is 
the number of additional trees to be retained af-
ter accounting for backbone trees. For clumping 
level definitions see Table 4. 

Unit Target 
TPA 

Non-back-
bone retain 
TPA 

Clumping 
level 

0100 40  7.5 Hi 

0200 20  6.3 Low 

0300 12  1.9 Low 

0400 25  6.4 Med 

0500 24  4.4 Med 

0600 19  7.9 Low 

0700 25 18.4 Low 

0800 28 13.6 Med 

0900 27 10.8 Hi 

1000 25 11.1 Med 

1100 22  6.9 Low 

1200 25  9.5 Med 

1300 18 12.1 Low 

1400 23 12.3 Low 

1500 35 13.0 Hi 

1600 20  8.2 Low 

1700 14  3.9 Low 

1900 12  5.4 Low 

2000 18  7.0 Med 

 
Table 4 Clumping level targets defined using the 
reference clumping envelope (Figure 6). Each cell 
gives the target proportion of trees in clumps of the 
size given by the column for the clumping level 
given by the row. 
 

1 2-4 5-9 10-14 15-30 

Low 0.35 0.45 0.18 0.02 0 

Medium 0.27 0.38 0.25 0.1 0 

High 0.2 0.35 0.22 0.15 0.08 
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densities that were much higher than anything appearing the reference envelope. In most units it 
was necessary to prescribe retention of backbone trees in clumps with non-backbone trees to meet 
the clumping targets. Units where this was not the case had low stocks of backbone trees and very 
high stocks of non-backbone trees, and so would have remained overly dense without a matrix 
thinning. Therefore, all units were prescribed VDT treatments. 
The treatment guidelines start with retaining and releasing all backbone trees, then retaining an 
appropriate number of TPA to move the unit within or reasonably near the stocking reference 
envelope. Target densities ranged from 12-40 TPA (30-99 trees ha-1) (Table 3). Based on the pat-
tern reference envelope, we defined low, medium, and high clumping level targets (Table 4) and 
assigned a clumping level to each unit (Table 3). Of the 19 units 10 were given low clumping 
targets, 6 were given medium clumping targets, and 3 were given high clumping targets. Clumping 
targets were then translated to per-acre numbers of clumps to add in each bin, for example, one 
prescription called for adding 2 small clumps per acre and 1 medium clump per 2 acres (Appendix 
A). 
For openings two kinds of guidelines were given: general guidelines on where the opportunities 
exist in each unit to create functioning open space and specific guidelines describing the numbers 
and configurations of openings to create. The general guidelines indicated one of the following: 
(1) backbone trees are very evenly spaced throughout the unit and there is simply not much oppor-
tunity for creating open space, (2) there is some opportunity for creating open space if careful, so 
leave retention clumps in loosely associated patches rather than scattered throughout the stand, (3) 
there is adequate space in openings or non-merchantable tree cover, so any implementation of the 
clumping targets will probably achieve open space targets, or (4) the unit could be too open after 
harvest, so be sure to retain clumps in a way that splits excessively large openings to break up 
sighting distances. In case (2), specific guidelines were given as to how many openings to create 
of what sizes. 
For non-merchantable trees we chose one of three general treatment types depending on the size 
and amount of openings and non-merchantable patches throughout the unit. (1) In units with small 
amounts of open space we recommended complete or near-complete removal of non-merchantable 
trees as a way to maximize the effect of the small openings that were there. (2) In units with abun-
dant open space but small patches of non-merchantable trees we recommended clearing most non-
merchantable trees but retaining scattered patches of pine regeneration. (3) In units with abundant 
open space filled with large patches of non-merchantable trees we recommended a PCT focused 
on retaining larger pines of good form and vigor. In some units high canopy cover in large trees 
obscured the mid- and understories so that there was not enough information to make a judgment 
about non-commercial treatment. 
An example prescription recommendation appears in Box 1, a set of simulated treatment visuali-
zations appear in Appendix A, and all prescription recommendations appear in Appendix B. 
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Box 1 Example prescription recommendation and simulated treatments. 

Unit 0600 
Acres: 58.9 Non-backbone merch TPA: 39.4 
Backbone TPA: 11.1 Non-backbone, non-merch TPA: 24.3 
Backbone BA: 66.9  

 
Spatial patterns of backbone trees compared to reference conditions 

 
Map of TAOs in unit 

 
Density and basal area of backbone trees plotted on 

historical envelopes 
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Box 1, continued 

Prescription Recommendations 
Target TPA: 19 
Justification: At a BA of 70-80, the reference TPA ranges from 18-35. Since this stand has good open 
space characteristics around the backbone trees we would like to be at the lower end of the density 
envelope. 
 
Non-backbone retain TPA: 7.9 
Justification: Target TPA - Backbone TPA = 7.9 
 
Clumping level: Low 
Justification: At the low prescribed density it would be difficult to create a lot of very large clumps. 
 
Clumping targets: 

 Bring 2 individuals per acre into small and medium clumps 

 Add 1 small clump per acre 

 Add 1 medium clump per 2 acres 

Justification: These are the numbers of clumps necessary to move from the current clump size distri-

bution to the targeted clumping level at the target TPA. The directive “Bring X individuals per acre 

into small and medium clumps” refers to leaving non-backbone trees in clumps with backbone trees 

to make larger clumps. Non-backbone trees can also be used to connect two clumps of backbone 

trees and make a larger clump. Usually it is best to select larger non-backbone trees with relatively 

clear lower boles to avoid leaving ladder fuels into backbone tree crowns. 

 

Opening targets: 

 Removing most of the non-merchantable trees will provide sufficient open space 

Justification: The open space distribution matches the reference conditions well. 

 

Non-commercial treatment: Save scattered pine regen patches, remove all else 

Justification: The open space in the unit is arranged in frequent small open patches rather than a 

few very large patches. In this configuration clearing out most of the non-merchantable trees will 

help maximize light coming into the openings, while saving scattered advance regen patches will 

make use of the abundant light. 

 

In Appendix A, the preceding figures and recommendations are made for each unit. Justifications are 
not given for every unit but the logic for selecting targets follows that given here. ■ 
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4. Discussion 

4.1 What is and is not captured with this method 

Measurements using LiDAR individual tree detection were able to provide a good deal of insight 
into the structural conditions of pre- and post-treatment units, including density, basal area, clump-
ing and opening patterns, and some understory conditions. However, there are several remaining 
points of uncertainty that cannot yet be fully assessed using only LiDAR data. These include the 
inexact equivalency of backbone trees and legacy trees; incomplete knowledge of trees in subor-
dinate canopy positions; lack of knowledge about species composition; and the omission of data 
about aspen clones, small wetland areas, and other biological hotspots. 
The backbone trees identified in this study were selected with a height threshold that varied by soil 
type. However, restoration treatments are, in practice, anchored around old trees, not just large 
trees (Franklin et al. 2013, Franklin & Johnson 2012). Old trees, even when small, provide several 
desirable characteristics that large young trees do not, including unique and functionally valuable 
crown structures (Ishii & McDowell 2002), lower sapwood-to-heartwood ratios and correspond-
ingly higher water use efficiency (Moore et al. 2004), lower mortality rates (Larson et al. 2015), 
higher fire resistance (Taylor 2010), and a higher number of high-quality habitat-providing cavities 
(Lindenmayer et al. 2012). In light of this, it is always important to distinguish between old trees 
and large trees; correspondingly, age class characteristics should be included in forest inventory. 
The inability to fully characterize subordinate trees and other understory vegetation is a consistent 
issue in LiDAR application (Richardson & Moskal 2011, Martinuzzi et al. 2009; but see Wing et 
al. 2012). This issue is more pronounced in areas where high canopy cover in large trees obscures 
LiDAR’s view of understory structure (Falkowski et al. 2008). For the purposes of this study some 
questions remain open as to the amount of commercial volume that would be removed under var-
ious treatments as well as the amount of work that would be necessary to thin or remove non-
merchantable trees. This is not a major issue when it comes to defining the desired conditions since 
those conditions are driven by the larger trees in the stand; however, it is an issue in terms of 
assessing economic viability of the restoration treatments at both unit and project area scales. 
Species composition is an important element of forest restoration that has not been accounted for 
in this work (Franklin & Johnson 2012). Typically, fire-suppressed mixed-conifer forests have 
shifted from historical dominance by fire-tolerant pines with some Douglas-fir to contemporary 
dominance by fire-intolerant young Douglas-fir and true firs (Johnston et al. 2016; Hagmann et al. 
2013, 2014; Merschel et al. 2014). Although some work has been done using LiDAR to differen-
tiate species based on crown morphology (Heinzel & Koch 2011; Brandtberg 2007) the results 
have not been particularly strong and, more importantly, there is a dim prospect of successfully 
identifying species of trees in subordinate canopy positions using this type of approach. 
Lastly, forest restoration typically includes the goal of maintaining unique micro-environments 
that may occur across a landscape. Examples of these include aspen clones, moist swales support-
ing different vegetation than the surrounding matrix, rock outcrops and other areas of unique geo-
logic or pedologic significance, and patches of snags or decadent wildlife trees (Franklin et al. 
2013). There also may be forest health issues to address, such as pockets of infection by root rots, 
mistletoe, or insect activity. There is evidence that some of these micro-environments can be de-
tected with LiDAR (Barbosa et al. 2016, Wing et al. 2015), but identifying these locations remains 
largely outside of the scope of LiDAR analysis. 
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Filling these data gaps and developing a final prescription would clearly require additional field-
work. In particular, the actual density and stocking of legacy trees (as compared to backbone trees) 
should be evaluated to verify the appropriateness of the recommended treatments. Some inventory 
or cruise data must be gathered to estimate the volume and grade of material to be removed, as 
well as to ensure that there are enough non-legacy trees of desirable species to meet the prescribed 
residual density and clumping targets. Each unit should be evaluated to determine specific non-
commercial treatments of understory trees and fine fuels and estimate costs associated with these 
treatments. Lastly, a qualified silviculturist should identify locations for small retention patches 
focused on different biological hotspots along with areas to focus on improvement of forest health. 
4.2 How this method compares to the traditional approach 

For forest restoration projects carried out to date, planning activities have been approached using 
the tools of traditional forestry. This includes delineating stands using aerial photos and ground 
truth surveys, timber and resource inventories on a grid of plots, a silvicultural assessment based 
on field surveys, and presale layout. The methods applied in this study augment the traditional 
approach. Using TAOs to estimate certain attributes of forest structure and spatial pattern, as well 
as to visualize patterns and potential treatment options, provides an additional level of knowledge 
before groundwork for a project even begins. The traditional steps of stand delineation, timber 
inventory, silvicultural assessment, and layout can all be made more efficient and effective using 
TAOs. For stand delineation, densities and clump/opening patterns of backbone trees can be taken 
into account along with aerial photos in order to better define units with homogeneous prescrip-
tions. Timber inventory designs can be guided by pre-existing knowledge of forest structure, for 
example: sampling effort in different stands can be scaled proportionally to structural variability; 
sampling can potentially be foregone or modified in large patches of pre-forest or non-commercial 
trees; and specific locations of rare and unique features – which may be missed in a typical gridded 
inventory – can be identified and visited. As demonstrated in this report, the structural data pro-
vided by TAOs can be used to outline much of a prescription for each treatment unit, leaving only 
a few details to be filled in using ground observations and inventory data. Finally, layout can be 
approved using TAO maps to pre-identify locations for openings and potentially skips, which can 
also inform placement of landings and yarding corridors. 
Along with supplementing traditional approaches, the methods in this study make a new level of 
sophistication available to silviculturists and other restoration planners. Since wall-to-wall LiDAR 
data can provide total coverage of project areas and their surrounding landscapes LiDAR tools can 
enable analyses that are not otherwise possible. For example, inventory plots are not large enough 
to capture patterns of tree clumps and openings, since these patterns are structured at a scale of 1-
10 acres (Churchill et al. 2013, North et al. 2007). The large footprint of LiDAR data allows for 
spatially explicit assessment of clump and opening pattern that would not otherwise be feasible.  
4.3 Recommendations for use of LiDAR in future projects 

In the future, the methods applied in this study could be built upon to improve accuracy of legacy 
tree detection, incorporate new remote sensing technologies for identifying tree species, and use 
reference conditions that are more methodologically compatible. 
Legacy tree detection could be improved by installing a set of plots relating tree height to tree age 
to localize the relationship, or by including a tree age or age class estimate in the standard timber 
inventory. Another improvement could come from using tree height and crown size (which can be 
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measured from TAOs) together in a logistic regression model to predict legacy tree status. This 
approach would make more complete use of the available TAO measurements. 
For species identification, a promising lead is the developing technology of co-acquisition of Li-
DAR and high-resolution hyperspectral orthophotos. Alonzo et al. (2014) demonstrated using 
these data to identify the species of individual street trees in Santa Barbara, CA with better than 
80% accuracy. Although forest conditions are much more difficult than the urban environment, 
hyperspectral imaging nevertheless shows promise as the best option for mapping species at the 
TAO scale. 
The reference condition datasets used in this study, while relevant, are not in the best possible 
format for comparison with LiDAR data. In particular, it would be preferable to compare LiDAR-
derived metrics to LiDAR-derived metrics, rather than ground-based metrics. Using the same 
methods for reference condition definition and departed condition assessment would be a more 
straightforward and more certain comparison. There is, then, a case for defining reference condi-
tions using LiDAR data collected over contemporarily restored landscapes, such as the Aspen and 
Illillouette Valleys in Yosemite National Park, CA and the Sugarloaf Valley in Sequoia National 
Park, CA, where the legacy of fire suppression has begun to be reversed by the reestablishment of 
frequent, low-intensity fire regimes (Collins et al. 2016, Lydersen et al. 2014, North et al. 2007). 
 

5. Conclusions 
Tree-approximate objects derived from LiDAR individual tree detection can be used to assess 
density, stocking, clumping, and opening patterns in a way that is sufficient to assign restoration 
prescriptions to treatment units. TAOs provide an excellent means of understanding the largest 
trees in a stand, which are the biological anchors guiding ecological restoration. This approach can 
also provide some information about smaller trees, sometimes enough to outline non-commercial 
treatments. Restoration prescriptions still require ground-based reconnaissance and inventory; 
however, the speed and efficiency of this fieldwork can be much improved with the foreknowledge 
that TAO analysis can provide. 
LiDAR does not currently provide solutions for mapping every bio-environmental feature of in-
terest, including species composition, small trees, disease pockets, and more; however, these items 
are the feature of much current research. Embracing LiDAR tools as a part of the silvicultural 
process will pave the way for more efficient and effective forest restoration. 
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Append A: Treatment visualizations 

In this appendix we have prepared a set of graphics showing the results of simulated treatments at 
different residual densities and clumping targets for three 10 acre areas with different structural 
characteristics. These visualizations are intended to provide an idea of what some treatment op-
tions might look like in order to facilitate prescription writing. 
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1. Open Forest Conditions 

No treatment 

Clump distribution for this treatment compared to reference 

Retain only backbone trees 

Clump distribution for this treatment compared to reference 



 3 

Retain backbone trees plus 5 TPA, medium clumping level 

Clump distribution for this treatment compared to reference 

Retain backbone trees plus 14 TPA, medium clumping level 

Clump distribution for this treament compared to reference 
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2. Mixed Conditions 

No treatment 

Clump distribution for this treatment compared to reference 

Retain only backbone trees 

Clump distribution for this treatment compared to reference 



 5 

Retain backbone trees plus 8 TPA, medium clumping level 

Clump distribution for this treatment compared to reference 

Retain backbone trees plus 15 TPA, medium clumping level 

Clump distribution for this treatment compared to reference 
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Retain backbone trees plus 22 TPA, medium clumping level 

 
Clump distribution for this treatment compared to reference 

 
Retain backbone trees plus 31 TPA, medium clumping level 

 
Clump distribution for this treatment compared to reference 
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3. Closed Forest Conditions 

No treatment 

Clump distribution for this treatment compared to reference 

Retain only backbone trees 

Clump distribution for this treatment compared to reference 
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Retain backbone trees plus 9 TPA, medium clumping level 

Clump distribution for this treatment compared to reference 

Retain backbone trees plus 18 TPA, medium clumping level 

Clump distribution for tis treatment compared to reference 
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Retain backbone trees plus 27 TPA, medium clumping level 

Clump distribution for this treatment compared to reference 

 
Retain backbone trees plus 35 TPA, medium clumping level 

Clump distribution for this treatment compared to reference 
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Retain backbone trees plus 44 TPA, medium clumping level 

Clump distribution for this treatment compared to reference 
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Appendix B: Prescription Recommendations 

In this appendix we provide a graphical assessment of each treatment unit with respect to the 

reference conditions for stocking, clumping, and open space, along with a quantitative report of 

unit acreage, backbone tree density and basal area, and non-backbone density divided up by 

merch/non-merch. 

Given these summary data, we have developed recommendations for treatment objectives. 

These recommendations are based solely on information from LiDAR data, and we duly recog-

nize – and urge the reader to recognize – that there is additional work to be done to verify the 

parameters of these prescriptions and flesh out the details. The purpose of the data presented 

herein is to (1) provide the first-pass version of a prescription that should be workable, and (2) 

demonstrate the kinds of data that can be expected from LiDAR. 

On the following page we give the summary for unit 0100, marked up to explain some of the 

different figures. For the remainder of the document the figures do not have captions, so refer 

to the following page if there are any questions as to interpretation.  
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Current condition summary 

Location of unit 

within Panhandle 

Patterns of backbone trees 

compared to patterns from 

reference conditions 

Density and basal area of 

backbone trees plotted on 

historical envelopes 

Map of TAOs in unit: 0-6 ft is open 

space, 6 ft tall to 9 in DBH is non-

backbone, non-merch, 9 in DBH to 

backbone cutoff is non-backbone 

merch, above that is backbone. 
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Prescription Recommendations 

Target TPA: 40 

Non-backbone retain TPA: 7.5 

Clumping level: High 

Clumping targets: 

 Bring 6 individual trees per acre into small or medium clumps 

 Add 0.7 medium clumps per acre 

 Add 1 large clump per 2 acres 

 Add 1 super clump per 5 acres 

Opening targets: 

 Leave retention clumps in patches rather than dispersing them 

 Leave at least 1 large opening, 0.1-0.25 acres in size, per 8 acres 

Non-commercial treatment: Not enough information due to high large-tree canopy cover 
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Prescription Recommendations 

Target TPA: 20 

Non-backbone retain TPA: 6.3 

Clumping level: Low 

Clumping targets: 

 Bring 1 individual tree per acre into small or medium clumps 

 Add 1 small clump per acre 

 Add 1 medium clump per 2 acres 

Opening targets: 

 Leave retention clumps in patches rather than dispersing them 

 Maintain the two larger openings in central and southern parts of unit 

Non-commercial treatment: 

In southern portion: clear non-merchantable trees to promote large openings 

In northern portion: PCT, retaining larger pines with good form and vigor 
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Prescription Recommendations 

Target TPA: 12 

Non-backbone retain TPA: 1.9 

Clumping level: Low 

Clumping targets: 

 Add 1 individual tree per 3 acres 

 Add 1 medium clump per 5 acres 

Opening targets: 

 Retain clumps in a way that splits excessively large openings to break up sighting dis-

tances 

Non-commercial treatment: PCT, retaining larger pines with good form and vigor 
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Prescription Recommendations 

Target TPA: 25 

Non-backbone retain TPA: 6.4 

Clumping level: Medium 

Clumping targets: 

 Bring 4 individuals per acre into small or medium clumps 

 Add 1 small clump per acre 

 Add 2 medium clumps per 3 acres 

 Add 1 large clump per 5 acres  

Opening targets: 

 Leave retention clumps in patches rather than dispersing them 

 Create 1 large opening, 0.1-0.25 acres in size, per 5 acres 

Non-commercial treatment: Not enough information due to high large-tree canopy cover 
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Prescription Recommendations 

Target TPA: 24 

Non-backbone retain TPA: 4.4 

Clumping level: Medium 

Clumping targets: 

 Bring 4 individuals per acre into small and medium clumps 

 Add 1 small clump per 2 acres 

 Add 1 medium clump per acre 

 Add 1 large clump per 5 acres  

Opening targets: 

 Backbone trees are very evenly spaced throughout the unit; there is little opportunity to 

create open space 

Non-commercial treatment: Not enough information due to high large-tree canopy cover 
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Prescription Recommendations 

Target TPA: 19 

Non-backbone retain TPA: 7.9 

Clumping level: Low 

Clumping targets: 

 Bring 1 individual per acre into small and medium clumps 

 Add 2 small clumps per acre 

 Add 1 medium clump per 2 acres  

Opening targets: 

 Removing most of the non-merchantable trees will provide plenty of open space 

Non-commercial treatment: Save scattered pine regen patches, remove all else 
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Prescription Recommendations 

Target TPA: 25 

Non-backbone retain TPA: 18.4 

Clumping level: Low 

Clumping targets: 

 Add 4-5 individuals per acre 

 Add 3 small clumps per acre 

 Add 1 medium clump per 2 acres  

Opening targets: 

 Removing most of the non-merchantable trees will provide plenty of open space 

Non-commercial treatment: Save scattered pine regen patches, remove all else 
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Prescription Recommendations 

Target TPA: 28 

Non-backbone retain TPA: 13.6 

Clumping level: Medium 

Clumping targets: 

 Bring 2 individuals per acre into small or medium clumps 

 Add 2 small clumps per acre 

 Add 1 medium clump per acre 

 Add 1 large clump per 5 acres  

Opening targets: 

 Backbone trees are very evenly spaced throughout the unit; there is little opportunity to 

create open space 

Non-commercial treatment: Not enough information due to high large-tree canopy cover 

  



 19 

 

  



20   

Prescription Recommendations 

Target TPA: 29 

Non-backbone retain TPA: 18.8 

Clumping level: High 

Clumping targets: 

 Bring 5 individuals per acre into small or medium clumps 

 Add 1 small clump per acre 

 Add 1 medium clump per acre 

 Add 1 large clump per 3 acres 

 Add 1 super clump per 10 acres  

Opening targets: 

 Backbone trees are very evenly spaced throughout the unit; there is little opportunity to 

create open space 

Non-commercial treatment: Not enough information due to high large-tree canopy cover 
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Prescription Recommendations 

Target TPA: 25 

Non-backbone retain TPA: 11.1 

Clumping level: Medium 

Clumping targets: 

 Bring 1-2 individuals per acre into small or medium clumps 

 Add 1 small clump per acre 

 Add 1 medium clump per acre 

 Add 1 large clump per 5 acres  

Opening targets: 

 Leave retention clumps in patches rather than dispersing them 

 Leave at least 1 large opening, 0.1-0.25 acres in size, per 8 acres 

Non-commercial treatment: Not enough information due to high large-tree canopy cover 
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Prescription Recommendations 

Target TPA: 22 

Non-backbone retain TPA: 6.9 

Clumping level: Low 

Clumping targets: 

 Bring 2-3 individuals per acre into small or medium clumps 

 Add 2 small clumps per acre 

 Add 1 medium clump per 2 acres  

Opening targets: 

 Leave retention clumps in patches rather than dispersing them 

 Leave at least 1 large opening, 0.1-0.25 acres in size, per 7 acres 

Non-commercial treatment: Clear non-merchantable trees to promote large openings 
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Prescription Recommendations 

Target TPA: 25 

Non-backbone retain TPA: 9.5 

Clumping level: Medium 

Clumping targets: 

 Bring 3 individuals per acre into small or medium clumps 

 Add 1 medium clump per acre 

 Add 1 large clump per 5 acres  

Opening targets: 

 Leave retention clumps in patches rather than dispersing them 

 Leave at least 1 large opening, 0.1-0.25 acres in size, per 6 acres 

Non-commercial treatment: Not enough information due to high large-tree canopy cover 
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Prescription Recommendations 

Target TPA: 18 

Non-backbone retain TPA: 12.1 

Clumping level: Low 

Clumping targets: 

 Add 3 individuals per acre 

 Add 2 small clumps per acre 

 Add 1 medium clump per 2 acres  

Opening targets: 

 Removing most of the non-merchantable trees will provide plenty of open space 

Non-commercial treatment: Not enough information due to high large-tree canopy cover 
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Prescription Recommendations 

Target TPA: 23 

Non-backbone retain TPA: 12.3 

Clumping level: Low 

Clumping targets: 

 Add 2 individuals per acre 

 Add 2 small clumps per acre 

 Add 1 medium clump per 2 acres  

Opening targets: 

 Removing most of the non-merchantable trees will provide plenty of open space 

Non-commercial treatment: Clear non-merchantable trees to promote large openings 
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Prescription Recommendations 

Target TPA: 35 

Non-backbone retain TPA: 13 

Clumping level: High 

Clumping targets: 

 Bring 3 individuals per acre into small and medium clumps 

 Add 1 small clump per acre 

 Add 1 medium clump per acre 

 Add 1 large clump per 2 acres 

 Add 1 super clump per 10 acres  

Opening targets: 

 Leave retention clumps in patches rather than dispersing them 

 Leave at least 1 large opening per 8 acres 

Non-commercial treatment: Save scattered pine regen patches, remove all else 
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Prescription Recommendations 

Target TPA: 20 

Non-backbone retain TPA: 8.2 

Clumping level: Low 

Clumping targets: 

 Add 2 small clumps per acre 

 Add 1 medium clump per 2 acres  

Opening targets: 

 Removing most of the non-merchantable trees will provide plenty of open space 

Non-commercial treatment: Save scattered pine regen patches, remove all else 
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Prescription Recommendations 

Target TPA: 14 

Non-backbone retain TPA: 3.9 

Clumping level: Low 

Clumping targets: 

 Bring 1 individual per acre into small or medium clumps 

 Add 1 small clump per acre 

 Add 1 medium clump per 3 acres  

Opening targets: 

 Removing most of the non-merchantable trees will provide plenty of open space 

Non-commercial treatment: Save scattered regen patches, remove all else 
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Prescription Recommendations 

Target TPA: 12 

Non-backbone retain TPA: 5.4 

Clumping level: Low 

Clumping targets: 

 Bring 1 individual per acre into small or medium clumps 

 Add 1 small clump per acre 

 Add 1 medium clump per 3 acres  

Opening targets: 

 Removing most of the non-merchantable trees will provide plenty of open space 

Non-commercial treatment: Not enough information due to high large-tree canopy cover 
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Prescription Recommendations 

Target TPA: 18 

Non-backbone retain TPA: 7 

Clumping level: Medium 

Clumping targets: 

 Bring 3 individuals per acre into small or medium clumps 

 Add 1 small clump per acre 

 Add 1 medium clump per 2 acres 

 Add 1 large clump per 5 acres  

Opening targets: 

 Removing most of the non-merchantable trees will provide plenty of open space 

Non-commercial treatment: Not enough information due to high large-tree canopy cover 
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Appendix C: Description of data products delivered 

All geospatial data products are in the Oregon Statewide HARN International Feet projection. 

Table 1 Files and folders with descriptions 

File name File type Description 

CHM Folder Canopy height model in metric units 

 CanopyHeight.img Raster 0.75 m resolution raster of canopy height 

above ground level in meters 

 CanopyHillshade.img Raster 0.75 m resolution raster of hillshade treating 

the canopy height model as topography 

CHM_ft Folder Canopy height model in English units 

 CanopyHeight.img Raster 0.75 m resolution raster of canopy height 

above ground level in feet 

Openings Folder Metrics related to open space in the canopy 

in metric units 

 IntertreeSpace.img Raster 0.75 m resolution raster giving distance to 

the nearest tree in meters for every cell that 

is not covered by canopy 

 Openings_12mDia.img Raster 0.75 m resolution binary raster delineating 

openings, with the value 1 representing area 

in openings of at least 12 m in diameter 

 BackboneIntertreeSpace.img Raster Same as IntertreeSpace.img, except calcu-

lated after removing all non-backbone trees 

 BackboneOpenings_12mDia.img Raster Same as Openings_12mDia.img, except cal-

culated after removing all non-backbone 

trees 

Openings_ft Folder Metrics related to open space in the canopy 

in English units 

 IntertreeSpace.img Raster 0.75 m resolution raster giving distance to 

the nearest tree in feet for every cell that is 

not covered by canopy 

 BackboneIntertreeSpace.img Raster Same as IntertreeSpace.img, except calcu-

lated after removing all non-backbone trees 
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Rx-units Folder Prescription information for each unit 

 Rx_units.shp Shapefile Polygons with unit boundaries and an attrib-

ute table containing prescription targets. 

See Table 2 for metadata 

TAO Folder Tree-approximate object layers in metric 

units 

 TAO_HighPoints.shp Shapefile Point file containing the high point for each 

TAO along with metrics about the TAO. See 

Table 3 for metadata. 

 TAO_MaxHeightMap.img Raster 0.75 m resolution raster where each cell 

takes on the maximum height, in meters, of 

the TAO that it is associated with 

 TAO_UniqueIDs.img Raster 0.75 m resolution raster where each cell 

takes on a value corresponding to the 

unique ID of the TAO that it is associated 

with 

TAO_ft Folder Tree-approximate object layers in English 

units 

 TAO_HighPoints.shp Shapefile Point file containing the high point for each 

TAO along with metrics about the TAO. See 

Table 3 for metadata. 

 TAO_MaxHeightMap.img Raster 0.75 m resolution raster where each cell 

takes on the maximum height, in feet, of the 

TAO that is associated with 
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Table 2 Metadata for Rx_units.shp 

Attribute Data Type Description 

Unit Text ID number of treatment unit 

Acres Number Number of acres in unit 

TargetTPA Number Target density in trees per acre 

BckBnTPA Number Number of backbone trees per acre of the unit 

ClumpLvl Text Target clumping level: Low, Medium, or High (See Table 4 in 

the main text) 

TgtInd Number Target proportion of trees as individuals, with no neighbors 

within 20 feet 

TgtSmall Number Target proportion of trees in small clumps of 2-4 trees using a 

20 ft limiting distance 

TgtMed Number Target proportion of trees in medium clumps of 5-9 trees us-

ing a 20 ft limiting distance 

TgtLarge Number Target proportion of trees in large clumps of 10-14 trees using 

a 20 ft limiting distance 

TgtSuper Number Target proportion of trees in super clumps of 15-30 trees us-

ing a 20 ft limiting distance 

AddInd Text Number of individual trees to add per acre to simultaneously 

meet TPA and clumping targets. Sometimes this is a negative 

number; in this case the given number of individual backbone 

trees should be added into clumps 

AddSmall Text Number of small (2-4 trees) clumps to add per acre to simul-

taneously meet TPA and clumping targets 

AddMed Text Number of medium (5-9 trees) clumps to add per acre to sim-

ultaneously meet TPA and clumping targets 

AddLarge Text Number of large (10-14 trees) clumps to add per acre to sim-

ultaneously meet TPA and clumping targets 

AddSuper Text Number of super (15-30 trees) clumps to add per acre to sim-

ultaneously meet TPA and clumping targets 
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Table 3 Metadata for TAO_HighPoints.shp 

Attribute Data Type Description 

Basin Number Unique ID for each TAO 

X Number X position (feet) of TAO high point in Oregon Statewide HARN 

International Feet projection 

Y Number Y position (feet) of TAO high point in Oregon Statewide HARN 

International Feet projection 

MaxHt Number Maximum LiDAR return height measured in the TAO, units are 

feet (English) or meters (metric) 

ClumpID Number ID of clump that this TAO is a member of 

ClumpSize Number Size of clump that this TAO is a member of 

ClumpBin Text Binned size of clump that this TAO is a member of: Individual, 

Small (2-4), Medium (5-9), Large (10-14), or Super (15-30) 

Backbone Binary 1 if this TAO is a backbone TAO, 0 otherwise 

CrownArea Number Area of delineated TAO crown in square feet (English) or square 

meters (metric) 

BbClumpID Number ID of clump that this TAO is a member of, only considering back-

bone TAOs 

BbClumpSz Number Size of clump that this TAO is a member of, only considering 

backbone TAOs 

BbClumpBn Text Binned size of clump that this TAO is a member of, only consid-

ering backbone TAOs: same bins as ClumpBin 

DBH Number Estimated DBH of the dominant tree in the TAO in inches (Eng-

lish) or centimeters (metric) 

RxUnit Number Unit this TAO is in, corresponding to Unit in Rx_units.shp 

Merch Binary 1 if this TAO’s estimate DBH is ≥9 in, 0 otherwise 

 


