Publications
Complete List of Published Work is in:
https://www.ncbi.nlm.nih.gov/myncbi/1p5cYGFFkx5kq/bibliography/public/
Kojima Y, Ting JT, R. Soetedjo R, Gibson SD, Horwitz GD. Injections of AAV vectors for optogenetics in anesthetized and awake behaving non-human primate brain. Journal of Visualized Experiments. 2021, 174.
Sedaghat-Nejad E, Fakharian MA, Pi J, Hage P, Kojima Y, Soetedjo R, Ohmae S, Medina J, Shadmehr R. P-sort: an open-source software for cerebellar neurophysiology. J Neurophysiol. 2021, 126: 1055-1075.
Soetedjo R, Kojima Y. Optogenetics in complex model systems (nonhuman primate), Springer Nature, Neuromethods: Measuring Cerebellar Function. 2021, 177 (in press). Review.
eNeuro. 8: 0519-20.
The Substantia Nigra Pars Reticulata Modulates Error-Based Saccadic Learning in Monkeys.Cell Rep. 30;34:108754.
Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex.J Neurophysiol. 121:2153-2162.
How cerebellar motor learning keeps saccades accurate.Kojima Y. (2019) A neuronal process for adaptive control of primate saccadic system. Prog Brain Res. 249:169-181.
Soetedjo R, Kojima Y, Fuchs AF. (2019) How cerebellar motor learning keeps saccades accurate. J Neurophysiol. 121:2153-2162.
Kojima Y, Soetedjo R. Elimination of the error signal in the superior colliculus impairs saccade motor learning. PNAS. 2018, 115: E8987-E8995.
Herzfeld D, Kojima Y, Soetedjo R, Shadmehr R. Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum. Nat Neurosci. 2018, 21: 736-743.
Kojima Y, Soetedjo R. Change in sensitivity to visual error in superior colliculus during saccade adaptation. Sci Rep. 2017; 7: 9566.
El-Shamayleh Y, Kojima Y, Soetedjo R, Horwitz GD. elective optogenetic control of Purkinje cells in monkey cerebellum. Neuron. 2017; 95: 51-62
Kojima Y, Soetedjo R. Selective reward affects the rate of saccade adaptation. Neuroscience. 2017; 355: 113-125.
Kojima Y. Role of saccade and the neural mechanisms. Journal of Health, Physical Education and Recreation. 2015;65: 862-867. Review.
Herzfeld D, Kojima Y, Soetedjo R, Shadmehr R. Encoding of action by the Purkinje cells of the cerebellum. Nature. 2015; 526(7573):439-42.
Kojima Y, Fuchs AF, Soetedjo R. Adaptation and adaptation transfer characteristics of five different saccade types in the monkey. J Neurophysiol. 2015; 114(1):125-37.
Kojima Y, Robinson FR, Soetedjo R. Cerebellar fastigial nucleus influence on ipsilateral abducens activity during saccades. J Neurophysiol. 2014; 111(8):1553-63.
Kojima Y. The neural mechanism of the cerebellum and brainstem for saccade adaptation. J. Japan Neural Network. 2012;19: 126-134. Review.
Kojima Y, Soetedjo R, Fuchs AF. Effect of inactivation and disinhibition of the oculomotor vermis on saccade adaptation. Brain research 2011;1401:30-9.
Kojima Y, Soetedjo R, Fuchs AF. Effects of GABA agonist and antagonist injections into the oculomotor vermis on horizontal saccades. Brain research 2010;17;1366:93-100.
Kojima Y, Soetedjo R, Fuchs AF. Behavior of the Oculomotor Vermis for Five Different Types of Saccade. J Neurophysiol. 2010;104(6):3667-76
Kojima Y, Soetedjo R, Fuchs AF. Changes in simple spike activity of some Purkinje cells in the oculomotor vermis during saccade adaptation are appropriate to participate in motor learning. J Neurosci. 2010;30(10):3715-27.
Soetedjo R, Fuchs AF, Kojima Y. Subthreshold activation of the superior colliculus drives saccade motor learning. J Neurosci. 2009;29(48):15213-22.
Soetedjo R, Kojima Y, Fuchs AF. Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? J Neurophysiol. 2008;100(4):1949-66.
Soetedjo R, Kojima Y, Fuchs AF. Complex spike activity signals the direction and size of dysmetric saccade errors. Prog Brain Res. 2008;171:153-9.
Kojima Y, Iwamoto Y, Robinson FR, Noto CT, Yoshida K. Premotor inhibitory neurons carry signals related to saccade adaptation in the monkey. J Neurophysiol. 2008;99(1):220-30.
Kojima Y, Iwamoto Y, Yoshida K. Microstimulation of the midbrain tegmentum creates learning signals for saccade adaptation. J Neurosci. 2007;27(14):3759-67.
Kojima Y, Iwamoto Y, Yoshida K. Effect of saccadic amplitude adaptation on subsequent adaptation of saccades in different directions. Neurosci Res. 2005;53(4):404-12.
Kojima Y, Iwamoto Y, Yoshida K. Memory of learning facilitates saccadic adaptation in the monkey. J Neurosci. 2004;24(34):7531-9.
Click here to go:
Projects | Publications | People | News | Contact |