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Abstract

I provide a detailed proof of the rational surgery existence theorem, in both the simply-

connected and non-simply-connected case. As applications of the simply-connected case, I

study (1) rational homotopy complex projective spaces in terms of their possible Pontryagin

numbers. (2) rational analogs of projective planes, which are smooth closed 4k dimensional

manifolds whose rational cohomology is rank 1 in dimension 0, 2k and 4k and is zero other-

wise. I prove that after dimension 2,4,8 and 16, which are the dimension of the real, complex,

quaternionic and octonionic projective planes, 32 is the smallest next dimension where such

manifolds do exist. Applying the rational surgery existence theorem, the question is re-

duced to finding possible Pontryagin classes satisfying the Hirzebruch signature formula

and a number of congruence relations determined by the integrality conditions coming from

the Riemann-Roch Theorem. And this is eventually equivalent to finding possible solutions

to a system of Diophantine equations. As an application of the non-simply-connected case,

I study the following question: given a special family of rational Poincaré duality algebras

and a finite group action on it, does there exist a free action of the finite group on a smooth

closed manifold whose cohomology ring realizes the given algebra with the action? In the

last chapter, I study rational surgery existence question in the case when the fundamental

group is Z.
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CHAPTER 1

Introduction

1.1. Background

In 1951, Serre proved that the homotopy groups of spheres are all finite except for

πn(Sn) and π4n−1(S
2n), i.e.

π∗(S
2k−1)⊗Q =

 Q ∗ = 2k − 1;

0 otherwise

π∗(S
2k)⊗Q =

 Q ∗ = 2k or 4k − 1 ;

0 otherwise

which are fairly simple compared to the very complicated ordinary homotopy groups of

spheres. Philosophically, this indicated that one can hope for complete answers to the ra-

tional version of certain homotopy theoretic problems that are almost impossible over Z.

In the mid 1960’s, Sullivan computed the homotopy groups of the classifying space G/PL

and introduced the idea of localization at primes, motivated by such type of computations.

In his 1970 lecture notes [S2], Sullivan initiated the concept of localization and comple-

tion of topological spaces. For simply-connected spaces, the localization can be inductively

constructed from the Postnikov tower. In 1971, Bousfield and Kan [BK] introduced the

fibrewise completion and localization functor, which allows a generalization to non-simply-

connected spaces. In particular, the localization at (0) associates to a space X a new space

X(0) whose higher homotopy groups are all rational vector spaces, and a map f : X → X(0)

inducing an isomorphism on the fundamental group and isomorphisms on higher homo-

topy groups tensoring the rationals. In [S1], Sullivan studied the diffeomorphism classes

of compact smooth manifolds determined by algebraic invariants consisting of the rational

homotopy type (the minimal model) and the tangent bundle information (including the

1



1. INTRODUCTION 2

Pontryagin classes). He also gave an existence theorem for manifolds realizing such rational

homotopy data, followed by a sketch of a proof. In [TW], the authors proved the local

surgery exact sequence.

1.2. Localization of topological spaces

The localization functor gives a topological space X a CW complex denoted X(0) which

carries all the rational homotopy data of the space X.

Definition 1.2.1. A Q-local space is a CW complex X, satisfying

π∗(X)
∼=−→ π∗(X)⊗Q for all ∗ > 1.

Remark 1.2.2. [GM] X is a Q-local space if and only if H̃∗(X̃;Z) are Q vector spaces,

where X̃ is the universal cover of X.

Definition 1.2.3. We say a map f : X → Y is a Q-homotopy equivalence if

f∗ : π1(X)
∼=−→ π1(Y ) and f∗ : π∗(X)⊗Q

∼=−→ π∗(Y )⊗Q for all ∗ > 1.

Definition 1.2.4. Given a space X and a Q-homotopy equivalence f : X → X(0) with

X(0) Q-local, we say that f : X → X(0) is a localization of X.

Theorem 1.2.5 ([GM]). If f : X → X(0) and f ′ : X → X
′

(0) are two localizations of X,

then there exists a homotopy equivalence h : X(0) → X
′

(0) which is unique up to homotopy,

such that the following diagram commutes up to homotopy.

X

f
��

f ′ // X(0)

h}}
X
′

(0)

Remark 1.2.6. A map localizes the homotopy groups if and only if it localizes the

homology groups. More precisely, suppose X and X(0) are connected CW complexes with

X(0) Q-local, and let f : X → X(0) be a map which induces isomorphism on the fundamental

group, then the following are equivalent [GM]:
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(a) f : X → X(0) is a localization defined as above.

(b) f∗ : H̃∗(X̃;Q)→ H̃∗(X̃(0);Q) is a isomorphsim.

Definition 1.2.7. We say two CW complexes X and Y are rational homotopy equivalent

if there exists a homotopy equivalence between their localizations:

f : X(0)
'−→ Y(0)

1.2.1. Localization of simply-connected spaces. For simply-connected spaces, the

localization can be constructed inductively from Postnikov towers.

Remark 1.2.8. Such construction can be extended to the more general so-called “nilpo-

tent spaces” (CW complexes having nilpotent fundamental group which acts nilpotently on

the higher homotopy groups) [S2]. But the resulting localization would also localize the

fundamental group.

Example 1.2.9. Construction of CPn(0).

Let α be a generator of H2(CPn;Q). Let f ∈ [CPn,K(Q, 2)] ∼= H2(CPn;Q) be such

that f∗(ι2) = α, then f induces isomorphisms on H∗(−;Q) through ∗ < 2n + 2. Let

g ∈ [K(Q, 2),K(Q, 2n+2)] = H2n+2(K(Q, 2);Q) be such that g∗ι2n+2 = ιn+1
2 . Pulling back

the fibration K(Q, 2n + 1) → ∗ → K(Q, 2n + 2) via g, we get a fibration K(Q, 2n + 1) →

E → K(Q, 2) with k-invariant ιn+1
2 .

K(Q, 2n+ 1)

��

// K(Q, 2n+ 1)

��
E

��

// ∗

��
CPn

88

f
// K(Q, 2)

g
// K(Q, 2n+ 2)

The map g induces a morphism between the two spectral sequence of the two corre-

sponding fibrations:
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Hp(K(Q, 2n+ 2);Hq(K(Q, 2n+ 1);Q))⇒ Hp+q(∗;Q)

2n+ 1 ι2n+1

ι2n+2

2 · · · 2n+ 2

Hp(K(Q, 2);Hq(K(Q, 2n+ 1);Q))⇒ Hp+q(E;Q)

2n+ 1 ι2n+1

ι2 · · · ιn+1
2

2 · · · 2n+ 2

In the first spectral sequence, the class ι2n+1 is killed by a differential dk(ιn+1
2 ) = ι2n+1,

which implies that in the second spectral sequence, ι2n+1 is also killed at the stage. So we

have:

π∗(E) =

 Q ∗ = 2 and 2n+ 1

0 otherwise

H∗(E;Q) =

 Q ∗ = 2i and i ≤ n

0 otherwise

and by obstruction theory, the map f : CPn → K(Q, 2) lifts to a map f̂ : CPn → E which

will be a localization map, so we constructed a Q-local space E = CPn(0).

1.2.2. Localization of non-simply-connected spaces. For non-simply-connected

spaces, the localization can be constructed from the fibrewise localization functor [BK].

Given a fibration of spaces F → E → B with F simply-connected, the fibrewise local-

ization functor gives a functorial commutative diagram:

F

��

// E

��

// B

F(0)
// E′ // B
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such that the bottom row is a fibration and the map F → F(0) agrees with the localization

of simply-connected spaces constructed from the Postnikov tower.

Given arbitrary CW complex X with fundamental group π, one can define X(0) to be

(Eπ ×π X̃)′, by applying the fibrewise localization functor to the fibration

X̃ // Eπ ×π X̃ ' X/π ' X

��
Bπ

1.3. Homotopy cartesian and cocartesian square

The concept of homotopy cartesian and homotopy cocartesian square will be used later

in the proof of the rational surgery existence theorem.

Definition 1.3.1. A commutative square

A

h
��

f // B

k
��

C
g // D

is called a homotopy cartesian square if the induced map from A to the homotopy pullback

P (k, g) is a weak homotopy equivalence. The homotopy pullback is defined to be {(b, α, c) ∈

B ×DI × C | k(b) = α(0), g(c) = α(1)}

Theorem 1.3.2. Given a commutative square as above, the following are equivalent:

(a) The square is a homotopy cartesian square.

(b) The induced map of the homotopy fibres Ff → Fg is a weak homotopy equivalence.

(c) The induced map of the homotopy fibres Fh → Fk is a weak homotopy equivalence.

Definition 1.3.3. A commutative square

A

h
��

f // B

k
��

C
g // D
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is called a homotopy cocartesian square if the induced map from the homotopy pushout

M(f, h) to D is a weak homotopy equivalence. The homotopy pushout M(f, h) is defined to

be the double mapping cylinder Mf ∪AMh = (B∪(A×I)∪C)/{(a, 0) ∼ f(a), (a, 1) ∼ h(a)}

Theorem 1.3.4. Given a commutative square as above, the following are equivalent:

(a) The square is a homotopy cocartesian square.

(b) The induced map of the homotopy cofibres Cf → Cg is a weak homotopy equivalence.

(c) The induced map of the homotopy cofibres Ch → Ck is a weak homotopy equivalence.

1.4. Surgery theory

We will give a brief review of classical surgery theory in this section. The classical

references are [B], [W] and [R].

Definition 1.4.1. An n-dimensional Poincaré complex X is a finite CW complex with

an orientation character ω : π1(X) → Z2 and a fundamental class [X] ∈ Hn(X;Zω) such

that:

∩[X] : H∗(X;Z[π1(X)])
∼=−→ Hn−∗(X;Z[π1(X)]ω)

Given a Poincaré complex X, there are two obstructions to the existence of a closed

manifold which is homotopy equivalent to X. The first obstruction is the existence of a

degree 1 normal map which gives a candidate manifold to perform surgery on; the second

obstruction is the vanishing of surgery obstruction, which can be computed algebraically, it

determines if surgery can produce a manifold realizing the starting homotopy type.

1.4.1. Spivak normal fibration.

Definition 1.4.2. A Spivak normal fibration of a n-dimensional Poincaré complex X is

a (k−1)-spherical fibration νX : X → BSG(k) together with a Spivak class α ∈ πn+k(TνX)

such that the image of α under the composition of the Hurewicz map and the Thom iso-

morphism is the fundamental class of X. i.e.

πn+k(TνX)→ H̃n+k(TνX , Z)→ Hn(X;Z)
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α 7−→ [X]

Theorem 1.4.3. [B, Spivak Uniqueness Theorem] Any two Spivak normal fibrations

(ν, α), (ν ′, α′) over X are related by a stable fibre homotopy equivalence b : ν
'→ ν ′ such that

T (b)∗(α) = α′. Stabilizing νX , we call the resulting stable spherical fibration the Spivak

normal fibration of X.

Remark 1.4.4. The Spivak normal fibration of a Poincaré complex is the homotopy

theoretic analogue of the stable normal bundle of a manifold.

Given any n-dimensional Poincaré complex X, one can embed K in some sphere Sn+k

for k large with regular neighborhood (Nn+k, ∂N). Then the inclusion ∂N → N is homo-

topy equivalent to a fibration with fibre a homotopy Sk−1 [B, Theorem I.4.4]. Pull back

this spherical fibration through the homotopy equivalence X → N , the resulting spherical

fibration E → X is the desired Spivak normal fibration of X.

1.4.2. Degree one normal map. The first obstruction to the surgery problem van-

ishes if there exists a bundle reduction of the Spivak normal fibration of X, i.e., one asks:

does there exist a vector bundle ξ : X → BSO such that:

BSO

��
X

ξ
<<

νX // BSG

commutes up to homotopy. If so, then there exists a degree 1 normal map.

Definition 1.4.5. A degree 1 normal map (f, b) : (M,νM )→ (X, ξ) is a map f : M →

X from a n-dimensional manifold M to a n-dimensional Poincaré complex X such that

f∗[M ] = [X], together with a bundle map b : νM → ξ covering f where νM is the stable

normal bundle of M .

Definition 1.4.6. A normal bordism is a degree 1 normal map

((F,B); (f, b), (f ′, b′)) : (W ;M,M ′)→ X × (I; 0, 1)

where (W ;M,M ′) is a cobordism. We say that the normal maps (f, b) and (f ′, b′) are

normally bordant to each other.
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The set of equivalence classes (up to normal bordism) of degree 1 normal map with

range X is called the the normal structure set of X, and is denoted by N (X).

Remark 1.4.7. [B][R][MM] If M is a smooth manifold, the normal structure set

NO(M) is isomorphic to [M,G/O] and if M is a PL manifold, the normal structure set

NPL(M) is isomorphic to [M,G/PL].

Theorem 1.4.8. [B][R][MM] Let Xn be a Poincaré complex and ξk a vector bundle

over Xn. There exists a degree 1 normal map (f, b) : (Mn, νM ) → (Xn, ξk) if and only if

ξk is a reduction of the Spivak normal fibration νkX .

Proof. (⇐=) If ξk is a reduction of the Spivak normal fibration νkX , the proper fibre

homotopy equivanece ξk → νkX induces a homotopy equivalence Tξk → TνkX . The Spivak

class α ∈ πn+k(Tν
k
M ) corresponds to a homotopy class c ∈ πn+k(Tξ

k) such that, under

the Hurewicz map and the Thom isomorphism, h(c) ∩ U = [X]. One can perform the

Thom-Pontryagin construction. Let g : Sn+k → Tξk represent the class c. By the Thom

transversality theorem, we can assume g is transverse to the zero section X in T (ξk). Then

M = g−1(X) is a n-dimensional smooth manifold whose normal bundle νkM is mapped to

ξk by g. By construction, the restricted map g|M : Mn → Xn is a degree 1 map.

(=⇒) If there exist a degree 1 normal map (f, b) : (Mn, νM ) → (Xn, ξk), the sphere

bundle Sξk is a Spivak normal fibration with Spivak class T (b)cM where cM ∈ πn+k(TνM )

is the class representing the collapsing map cM : Sn+k → Sn+k/(Sn+k D(νM )) = TνM .

Then by the Spivak uniqueness theorem, ξk is a reduction of νkX .

1.4.3. Surgery obstruction. The surgery obstruction lives in the L-group of the

group ring Z[π1(X)], it is the kernel form of the candidate degree 1 normal map. The

L-group can be computed algebraically.

Theorem 1.4.9. Given a degree 1 normal map (f, b) : (Mm, νM ) → (X, ξ) (m ≥ 5),

there is a surgery obstruction

σ∗(f, b) ∈ Lm(Z[π1(X)])
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such that σ∗(f, b) = 0 if and only if (f, b) is normally bordant to a homotopy equivalence.

Example 1.4.10. [R] In the case that X is simply-connected, we have

Lm(Z) =


Z m ≡ 0 (mod 4)

Z2 m ≡ 2 (mod 4)

0 otherwise

Remark 1.4.11. In the 4k dimensional simply-connected case, the surgery obstruction

vanishes if and only if the symmetric forms (H2k(M ;Z), λ) and (H2k(X;Z), λ) are stably

isomorphic, i.e.

(H2k(M ;Z), λ)⊕H(Zm) ∼= (H2k(X;Z), λ)⊕H(Z`)

where H(Zm) and H(Z`) are hyperbolic forms. And this happens if and only if the two

forms have the same signature

σ(H2k(M ;Z), λ) = σ(H2k(X;Z), λ)

1.5. Pontryagin classes

Pontryagin classes are characteristic classes that play an important role in surgery the-

ory. The Pontryagin numbers are homeomorphism invariants of smooth manifold.

Theorem 1.5.1. [MS] Let pi(γ) ∈ H4i(BSO;Z) be the Pontryagin class of the universal

bundle γ over the smooth orientable classifying space BSO. The rational cohomology ring

of BSO is generated by these Pontryagin classes:

H∗(BSO;Q) = Q[p1(γ), p2(γ), · · · ]

and there are no polynomial relations among the pi(γ)’s.

Definition 1.5.2. LetM4n be a smooth, compact, oriented manifold. For each partition

I = i1, . . . , ir of n, the Ith Pontryagin number pI [M ] = pi1 · · · pir [M ] is defined to be the

integer

〈pi1(τM ) · · · pir(τM ), [M ]〉

where pik(τM ) ∈ H4ik(M ;Z) is the ikth Pontraygin class of the tangent bundle of M .
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Remark 1.5.3. In the 1960s, Novikov proved the famous result that rational Pontryagin

classes of the tangent bundle are homeomorphism invariants for manifolds.

Definition 1.5.4. Given a formal power series f(t), the associated multiplicative se-

quence is a sequence of polynomials in the variables xi

K1(x1),K2(x1, x2),K3(x1, x2, x3), · · ·

such that

Kk(σ1, · · · , σk) = the degree k homogeneous part of f(t1) · · · f(tk)

where σi is the ith elementary symmetric polynomial on the variables t1, t2, · · · , tk, i.e.

1 + σ1 + σ2 + · · ·+ σk = (1 + t1) · · · (1 + tk)

Example 1.5.5. The L polynomial Lk(σ1, σ2, . . . , σk) is the degree k polynomial of the

multiplicative sequence associated to the power series

f(t) =
√
t/ tanh

√
t = 1 +

1

3
t− 1

45
t2 + · · ·

.

For example, when k = 2, if we formally write p1 = σ1(t1, t2), p2 = σ2(t1, t2), then

L2(p1, p2) = the degree 2 homogeneous part of

( √
t1

tanh
√
t1

)
×
( √

t2
tanh

√
t2

)
= the degree 2 homogeneous part of (1 +

1

3
t1 −

1

45
t21 + · · · )× (1 +

1

3
t2 −

1

45
t22 + · · · )

=
1

9
t1t2 −

1

45
(t21 + t22)

=
1

9
t1t2 −

1

45
((t1 + t2)

2 − 2t1t2)

= − 1

45
(t1 + t2)

2 +
7

45
t1t2

= − 1

45
p21 +

7

45
p2

Theorem 1.5.6. (Hirzebruch signature theorem) For any smooth closed oriented man-

ifold M4k with Pontryagin classes pi = pi(τM ), fundamental class [M4k], and signature

σ(M4k),

σ(M4k) = 〈Lk(p1, · · · , pk), [M4k]〉
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Remark 1.5.7. The signature theorem indicats that the coefficients in the L polynomial

can be also obtained in the following way. The signature function M 7→ σ(M) gives rise

to an algebra homomorphism from the rational cobordism algebra Ω∗ ⊗Q to Q. And since

the algebra

Ω∗ ⊗Q ∼= Q[CP2,CP4, . . .]

and σ(CP2k) = 1, we can solve for the coefficient of the L polynomial. For example,

L3(p1, p2, p3) = ap3 + bp1p2 + cp31. By the signature theorem, we have
1 = ap3[CP6] + bp1p2[CP6] + cp31[CP6]

1 = ap3[CP2 × CP4] + bp1p2[CP2 × CP4] + cp31[CP2 × CP4]

1 = ap3[CP2 × CP2 × CP2] + bp1p2[CP2 × CP2 × CP2] + cp31[CP2 × CP2 × CP2]

The Pontryagin numbers of CP2k can be computed by the following formula [MS]

pi1 · · · pir [CP2k] =

(
2k + 1

i1

)
· · ·
(

2k + 1

ir

)
so the above system of linear equations can be rewritten as

1 = 35a+ 147b+ 343c

1 = 30a+ 105b+ 225c

1 = 27a+ 81b+ 162c

Hence 
a = 62

945

b = − 13
945

c = 2
945

So we have computed that

L3(p1, p2, p3) =
62

945
p3 +− 13

945
p1p2 +

2

945
p31

Remark 1.5.8. [MS, Problem 19-C] Let Bn be the n-th Bernoulli number. The coeffi-

cient of pn in the L-polynomial Ln(p1, . . . , pn) is equal to 22n(22n−1 − 1)Bn/(2n)!.



CHAPTER 2

Rational Surgery Preliminaries

2.1. Q-Poincaré complex

In rational surgery theory, the starting space carrying all the desired rational homotopy

data is a Q-local space satisfying the Poincaré duality in rational coefficients.

Definition 2.1.1. An n-dimensional Q-Poincaré complex is a CW complex X that

is rational homotopy equivalent to a finite CW complex, with an orientation character

ω : π1(X)→ Z2 and a fundamental class [X] ∈ Hn(X;Qω) such that:

∩[X] : H∗(X;Q[π1(X)])
∼=−→ Hn−∗(X;Q[π1(X)]ω)

To determine if a CW complex X is a Q-Poincaré complex, we need to first check if X

has the rational homotopy type of a finite complex. The following lemma gives necessary

and sufficient condition in the case when X has finite fundamental group.

Lemma 2.1.2. [DM, Theorem 3.5]Given a CW complex X with finite fundamental group

G and universal cover X̃, the following are equivalent:

(a) X is rational homotopy equivalent to a finite complex.

(b) H∗(X̃;Q) is finitely generated, and for all g ∈ G− {e}, the Lefschetz number

∑
(−1)i tr(g∗ : Hi(X̃;Q)→ Hi(X̃;Q)) = 0

(c) H∗(X̃;Q) is finitely generated and
∑∞

i=0(−1)i[Hi(X̃;Q)] = 0 ∈ K̃0(QG).

Remark 2.1.3. If X is simply-connected with
∑

dimHi(X;Q) <∞, there always exists

a finite CW complex that is rational homotopy equivalent to X.

12



2. RATIONAL SURGERY PRELIMINARIES 13

2.2. Rational Spivak normal fibration

Given any n-dimensional Q-Poincaré complex X, there exists a finite CW complex

K and a homotopy equivalence f : X(0) → K(0). One can embed K in some sphere

Sn+k for k large with regular neighborhood (Nn+k, ∂N). Since K is also a Q-Poincaré

complex, the inclusion ∂N → N is homotopy equivalent to a fibration E → N whose

fibre F is rational homotopy equivalent to Sk−1. Localizing the fibration we get another

fibration Sk−1(0) → E(0) → N(0) ' K(0). Now we pull back this fibration through the map

X → X(0) → N(0) to get a fibration Sk−1(0) → E′ → X. We call this rational spherical

fibration νX : X → BSG(k)(0) the rational Spivak normal fibration of X.

Moreover, if X is Q-local, there exists a Spivak class α ∈ πn+k(TνX) such that the

image of α under the composition of the Hurewicz map and the Thom isomorphism is the

fundamental class of X. i.e.

πn+k(TνX)→ H̃n+k(TνX ;Z)→ Hn(X;Z) ∼= Hn(X;Q) ∼= Q

α 7−→ [X]

Remark 2.2.1. Since BSG(0) is contractible, the rational Spivak normal fibration νX :

X → BSG(0) is fibre homotopy equivalent to any other rational spherical fibration ν ′ : X →

BSG(0). Moreover, any map ξ : X → BSO(0) is a reduction of νX , i.e. the diagram

BSO(0)

��
X

ξ
::

νX // BSG(0) ' ∗

commutes up to homotopy.

2.3. Rational degree 1 normal map

Definition 2.3.1. Let X be a n-dimensional Q-Poincaré complex with a specified fun-

damental class [X] ∈ Hn(X;Q) and a vector bundle ξ over X. A rational degree 1 normal

map (f, b) : (M,νM ) → (X, ξ) is a map f : M → X from a n-dimensional closed ori-

ented manifold M to X together with a bundle map b : νM → ξ covering f , such that

r∗f∗[M ] = [X] with r∗ : Hn(X;Z)→ Hn(X;Q) and νM is the normal bundle of M .
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Definition 2.3.2. If we do not specify a choice of fundamental class [X] ∈ Hn(X;Q),

a rational nonzero degree normal map is a map f : M → X covered by a bundle map

b : νM → ξ such that f∗[M ] 6= 0 ∈ Hn(X;Q).

Remark 2.3.3. Let Xn be a rational Poincaré complex and ξk a vector bundle over

Xn. There exists a rational degree 1 normal map (f, b) : (Mn, νM )→ (Xn, ξk) if and only

if there exists a homotopy class c ∈ πn+k(Tξ
k) such that, under the Hurewicz map, the

Thom isomorphism and the coefficient map r∗ : Hn(X;Z)→ Hn(X;Q), r∗(h(c)∩U) = [X].

If there is such a homotopy class c, we can perform the Thom-Pontryagin construction to

get the rational degree 1 normal map as described in the ordinary case.

2.4. Rational surgery obstruction

Theorem 2.4.1. [A][TW] Given a rational degree 1 normal map (f, b) : (Mm, νM ) →

(X, ξ) (m ≥ 5), there is a surgery obstruction

σ∗(f, b) ∈ Lm(Q[π1(X)])

such that σ∗(f, b) = 0 if and only if (f, b) is normally bordant to a rational homotopy

equivalence.

Example 2.4.2. [R] In the case that X is simply-connected,

Lm(Q) =

 Z⊕
⊕
∞ Z2 ⊕

⊕
∞ Z4 m ≡ 0 (mod 4)

0 otherwise

2.5. Homotopy cartesian and cocartesian squares involving localization maps

In the proof of the rational surgery existence theorem, we will use the following lemma.

Lemma 2.5.1. [TW, Lemma 6.1] Consider the square of connected CW complexes

A
f - B

A(0)

h

?
g - B(0)

k

?
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Suppose that g induces an isomorphism on π1 and the vertical maps are localizations. Then

if the square is a homotopy cartesian square, it is a homotopy cocartesian square. If we

further suppose π1A = 1, the converse holds.

Proof. (=⇒): Suppose the square above is a homotopy cartesian square. Let F denote

the homotopy fibre of h and k. There is a homology spectral sequence with

Hp(B(0), A(0);Hq(F ))⇒ Hp+q(B,A)

It is clear that H̃∗(F ) are torsion and H∗(B(0), A(0)) are Q-vector spaces, so the E2-stage is

like:

0

Q-vector space

All the differentials vanish. We have E2
∼= E∞, and so H∗(B,A)

∼=−→ H∗(B(0), A(0)). By

the Whitehead Theorem, the homotopy cofibres Cf and Cg are weak homotopy equivalent,

which implies that the square is a homotopy cocartesian square.

(⇐=): Suppose the square is a homotopy cocartesian square and π1A = 0. Then the

mapping cones Ch and Ck are homotopy equivalent. For the fibration sequence FA → A→

A(0), it is clear that H̃p(A(0); H̃q(FA)) = 0 for all p, q. And since π1A = 0, we have the

Serre exact sequence on homology, so FA → A→ A(0) is also a cofibration sequence. Then

we have the Puppe sequence:

FA → A→ A(0) → ΣFA → ΣA→ ΣA(0) → · · ·

where every 2 consecutive maps in the sequence form a cofibration sequence up to homotopy.

So A → A(0) → ΣFA is also a cofibration sequence. Then we have ΣFA ' Ch 'weak Ck '

ΣFB. Then by the fact that H̃∗+1(ΣX) ∼= H̃∗(X), we have H̃∗(FA) ∼= H̃∗(FB), and by

the Whitehead theorem, FA and FB are weak homotopy equivalent. So the square is a

homotopy cartesian square. �



CHAPTER 3

Simply-connected rational surgery

3.1. Sullivan’s Theorem

In [S1, Theorem 13.2], Sullivan stated a theorem on realizing a given rational homotopy

type by constructing a closed manifold using surgery theory, followed by a sketch of the

proof. Here we restate and prove it carefully.

Theorem 3.1.1. Let X be an n = 4k dimensional simply-connected, Q-local, Q-Poincaré

complex. There exists a simply-connected smooth closed 4k dimensional manifold M , and

a Q-homotopy equivalence f : M −→ X if and only if:

Case 1: signature σ(X) = 0

There exists cohomology classes pi ∈ H4i(X;Q), 1 ≤ i ≤ k and a fundamental class

µ ∈ H4k(X;Q) ∼= Q such that:

(i) Lk(p1, . . . , pk) = 0 ∈ H4k(X;Q)

(ii) The symmetric bilinear form H2k(X;Q) × H2k(X;Q) → Q defined as 〈· ∪ ·, µ〉 is

isomorphic to m〈1〉 ⊕m〈−1〉.

Case 2: signature σ(X) 6= 0

There exists cohomology classes pi ∈ H4i(X;Q), 1 ≤ i ≤ k, and a fundamental class

µ ∈ H4k(X;Q) ∼= Q such that

(i) 〈Lk(p1, . . . , pk), µ〉 = σ(X)

(ii) The symmetric bilinear form H2k(X;Q) × H2k(X;Q) → Q defined as 〈· ∪ ·, µ〉 is

isomorphic to m〈1〉 ⊕ n〈−1〉

(iii) There exists a closed smooth 4k dimensional manifold N such that

〈pI(τN ), [N ]〉 = 〈pI , µ〉
16
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for all partitions I of k.

If the choice of cohomology classes pi and fundamental class µ satisfy all the above

conditions ((i) and (ii) in case 1; (i),(ii)and (iii) in case 2 ), surgery theory will construct

a Q-homotopy equivalence f : M → X which satisfies f∗pi = pi(τM ), where pi(τM ) are

the Pontryagin classes of the tangent bundle of M , and in case 2, the Pontryagin numbers

pI [M ] = 〈pI , µ〉 for all partitions I of k.

Proof. (=⇒): Suppose there exists a simply-connected closed 4k dimensional manifold

M , and a Q-homotopy equivalence f : M −→ X. Then the induced map on the cohomology

rings f∗ : H∗(X;Q)
∼=−→ H∗(M ;Q) is a isomorphism. Let pi ∈ H4i(X;Q) be the cohomology

classes such that f∗pi = pi(τM ), 1 ≤ i ≤ k, then:

〈Lk(p1, . . . , pk), f∗[M ]〉 = 〈Lk(f∗p1, . . . , f∗pk), [M ]〉

= 〈Lk(p1(τM ), . . . , pk(τM )), [M ]〉

= σ(M)

= σ(X)

For the case σ(X) 6= 0, let µ = f∗[M ].

For (ii) in both cases, the intersection form on H2k(X;Q) with respect to the funda-

mental class f∗[M ] is isomorphic to the rational intersection form of M , which is the image

of a nonsingular symmetric form over Z. By the Witt Cancelation Theorem and the fact

that the image of the Witt ring W (Z) in W (Q) consists exactly of classes of the form

m〈1〉 ⊕ n〈−1〉 over Q, (ii) is satisfied.

For (iii) in Case 2 , just let N = M .

(⇐=): We will prove that under the hypothesis, there exists a rational degree 1 normal

map such that the surgery obstruction vanishes. The proof will be carried out in §3.2 and

§3.3.
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3.2. Rational degree 1 normal maps

We will first prove that given any set of cohomology classes pi ∈ H4i(X;Q) for 1 ≤

i ≤ k, one can construct a nonzero degree rational normal map pulling back the pi’s to

the Pontryagin classes of the manifold. And this is sufficient to give the desired normal

map in the case that σ(X) = 0. For the case when σ(X) 6= 0, we prove that by adding

the hypothesis condition (iii), one can construct a rational degree 1 normal map that maps

the fundamental class of the candidate manifold to a specific fundamental class of the local

space that will also work in the surgery obstruction step.

Lemma 3.2.1. Let X be an n = 4k dimensional simply-connected, Q-local, Q-Poincaré

complex, equipped with cohomology classes pi ∈ H4i(X;Q), 1 ≤ i ≤ k. There always exists

a Q-Poincaré complex PB, a localization pr1 : PB → X, and a rational nonzero degree

normal map (g, ĝ) : (M,νM )→ (PB, ξ) where f∗pi = pi(τM ) for f = pr1 ◦ g.

νM

��

// ξ

��
M

f

66
g // PB

pr1 // X

Proof. The homotopy classes of maps from a space to the Eilenberg-Maclane space

K(Q, 4i) are in 1 − 1 correspondence with the 4i dimensional rational cohomology classes

of the space, so the pi’s define a map p : X
(p1,...,pk)−−−−−−→ ΠK(Q, 4i) ' BSO(0). For m >> n,

define p : BSO(m)
(p1,...,pi,...,)−−−−−−−→

∏
K(Q, 4i), where pi ∈ H4i(BSO(m);Q) are such that

(1 + p1 + . . .+ pi + . . .)(1 + p1(γ
m) + . . .+ pi(γ

m) + . . .) = 1

where γm is the universal plane bundle over BSO(m).

Let PB be the homotopy pull-back space of p and p just defined. Let ξm denote the

pullback bundle of γm over PB. Then by Theorem 18.3 in [MS] asserting that the Hurewicz

homomorphism of an (m− 1)-connected space is a C-isomorphism up to dimension 2m− 1,
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we have

πn+m(Tξm)⊗Q ∼= Hn+m(Tξm)⊗Q

∼= Hn(PB;Q) (Thom Isomorphism)

∼= Hn(X;Q)

∼= Q

So one can choose a class α ∈ πn+m(Tξm) such that the image of α under the above

isomorphisms is nonzero, and perform the Thom-Pontryagin construction. The class α is

represented by a map g : Sm+n −→ Tξm of nonzero degree. Deform g so that it is transverse

to the zero-section PB, then define M = g−1(PB), where g : M → PB is now covered by

the bundle map ĝ : νM = g∗ξ → ξ.

νM

��

// ξ

��

// γm

��
M

f !!

g // PB

pr1

��

pr2 // BSO(m)

p

��
X

p // ΠK(Q, 4i)

�

We now generalize Lemma 3.2.1, strengthening both the hypothesis and the conclusion

to construct a rational degree 1 normal map such that the fundamental class of M maps to

a specified fundamental class µ ∈ Hn(X;Q).

Lemma 3.2.2. Let X be an n = 4k dimensional simply-connected, Q-local, Q-Poincaré

complex, together with cohomology classes pi ∈ H4i(X;Q), 1 ≤ i ≤ k, and a fixed funda-

mental class µ ∈ Hn(X;Z) ∼= Q. Suppose there exists a closed 4k dimensional manifold N

such that

〈pI(τN ), [N ]〉 = 〈pI , µ〉

for all partitions I of k, then there exists a rational degree 1 normal map (g, ĝ) : (M,νM )→

(PB, ξ) where pr1 : PB → X is a localization and for f = pr1 ◦ g : M → X, we have

f∗[M ] = µ and f∗(pi) = pi(τM ).
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Proof. With the additional hypothesis condition (iii) in Theorem 3.1.1, we will prove

that there exists a “correct” class α ∈ πn+m(Tξm) such that if we perform Thom-Pontryagin

construction using α, the corresponding normal map would satisfy f∗[M ] = µ. We will first

construct a three-level commutative diagram.

Condition (iii) says, there exists a closed manifold N such that for all partitions I of k

〈pI(τN ), [N ]〉 = 〈pI , µ〉 = 〈pI , p−1∗ (p∗µ)〉

which implies 〈pI(νN ), [N ]〉 = 〈pI(γm), p−1∗ (p∗µ)〉. Since H∗(BSO;Q) ∼= Q[p1, p2, · · · ] and

Hn(BSO(m);Q) ∼= Hom(Hn(BSO(m);Q),Q), these congruences imply that p−1∗ (p∗µ) lies

in the image of the manifold N under the homomorphism ν : ΩSO
n → Hn(BSO;Q) defined

by ν(M) = νM ∗[M ] where νM is the classifying map for the normal bundle of M :

νM //

��

γ

��
M

νM // BSO

Note that ν can also be interpreted as the map ν in the following diagram:

ΩSO
n
∼= limm→∞ πn+m(Tγm)

ν

��

h // limm→∞Hn+m(Tγm;Z)

∩U
��

Hn(BSO;Q) Hn(BSO;Z)
i∗

oo

Then since p−1∗ (p∗µ) ∈ Im ν, there exists a class β ∈ πn+m(Tγm) such that ν(β) =

i∗(h(β) ∩ U) = p−1∗ (p∗µ) ∈ Hn(BSO;Q).

Let Sm−1(0) → νX → X be the rational Spivak normal fibration of the Q-Poincaré complex

X. Let ν̃X = p∗(Sγm(0)), where Sm−1(0) → Sγm(0) → BSO(m)(0) is the localization of the

fibre bundle Sm−1 → Sγm → BSO(m). As mentioned in Remark 2.1, since BSG(0) is

contractible, νX is fibre homotopy equivalent to ν̃X . So there exists a class cX ∈ πm+n(T ν̃X),

such that under the Hurewicz and Thom map, cX is mapped to µ ∈ Hn(X;Z) ∼= Q.

Then we have the following main diagram, which include three squares in the level of

base spaces, spherical fibrations and Thom spaces respectively. It is easy to check that each

vertical map is a localization map.
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Sm−1

""

Sm−1

||
Sξm

��

  

// Sγm

}}

��

PB

pr1

��

!!

pr2 // BSO(m)

}}

p

��

Tξm

��

// Tγm

��
T ν̃X ' Tξm(0) // Tγ

m
(0)

X

==

p
// BSO(m)(0)

aa

// BSG(0) ' ∗

ν̃X ' Sξm(0)

??

// Sγm(0)

aa

// ν(0)

``

Sm−1
(0)

>>

Sm−1
(0)

aa

Figure 1. Main Diagram

To prove the existence of a “correct” class α ∈ πn+m(Tξm) that gives the desired rational

degree 1 normal map in Lemma 3.2.2, we will prove the following property of the diagram:

Lemma 3.2.3. The inner-most square of Thom spaces in the above diagram is a homo-

topy cartesian square.

Proof. To prove this lemma, we will use Lemma 2.5.1 in both directions. We will also

need the following easy lemma.
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Lemma 3.2.4. Consider the diagram of CW complexes:

A′

h′

��

  

f ′ // B′

~~

k′

��

A

h

��

!!

f // B

}}

k

��

A′′

h′′��

f ′′ // B′′

k′′��
C ′′

g′′ // D′′

C

==

g // D

aa

C ′

>>

g′ // D′

``

Suppose that the outer-most square and middle square are homotopy cocartesian squares,

and the four diagonals are cofibration sequences. Then the inner-most square is a homotopy

cocartesian square.

Proof. The proof follows from the following diagram of homology exact sequences of

cofibrations. By the homotopy cocartesian square assumption, we have H∗Cf ∼= H∗Cg and

H∗Cf ′ ∼= H∗Cg′ , then the five lemma implies H∗Cf ′′ ∼= H∗Cg′′ . Thus the inner-most square

is a homotopy cocartesian square.

· · · // H∗(A
′) //

��

H∗(B
′) //

��

H∗(Cf ′) //

��

· · ·

· · · // H∗(C
′)

??

//

��

H∗(D
′)

??

//

��

H∗(Cg′)

??

//

��

· · ·

· · · // H∗(A) //

��

H∗(B) //

��

H∗(Cf ) //

��

· · ·

· · · // H∗(C)

??

//

��

H∗(D)

??

//

��

H∗(Cg)

??

//

��

· · ·

· · · // H∗(A
′′) //

��

H∗(B
′′) //

��

H∗(Cf ′′) //

��

· · ·

· · · // H∗(C
′′)

??

//

��

H∗(D
′′)

??

//

��

H∗(Cg′′)

??

//

��

· · ·

· · · // H∗−1(A
′) // H∗−1(B

′) // H∗−1(Cf ′) // · · ·

· · · // H∗−1(C
′) //

??

H∗−1(D
′) //

??

H∗−1(Cg′) //

??

· · ·
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�

Now we get back to the proof of Lemma 3.2.3 asserting that the inner-most square of

Thom spaces in the main diagram is a homotopy cartesian square. The middle square of base

space and the outer-most square of spherical fibrations in the main diagram are homotopy

cartesian squares by construction. By Lemma 2.5.1, they are homotopy cocartesian squares.

Notice that for a spherical bundle ν over a space X, ν → X → Tν is a cofibration sequence,

so by Lemma 3.2.4, the inner-most square of Thom space is a homotopy cocartesian square.

Since the Thom spaces are simply-connected, we can then apply the other direction of 2.5.1,

so this square of Thom space is a homotopy cartesian square. This completes the proof of

Lemma 3.2.3. �

Back to the proof of Lemma 3.2.2 asserting the existence of the desired rational degree

1 normal map. In the following diagram, the homotopy group of the Thom space maps to

the homology of the base space through Hurewicz and Thom maps:

πn+m(Tξm)

Tpr1∗

��

##

Tpr2∗ // πn+m(Tγm)

xx

Tp∗

��

Hn(PB)

pr1∗

��

pr2∗// Hn(BSO(m))

p∗

��
Hn(X)

p∗ // Hn(BSO(m)(0))

πn+m(T ν̃X)

<<

Tp∗ // πn+m(Tγm(0))

ee

We now claim that β ∈ πn+m(Tγm) and cX ∈ πm+n(T ν̃X) get mapped to the same ele-

ment in πn+m(Tγm(0)). Note that the image of β and cX , which are p−1∗ (p∗µ) ∈ Hn(BSO;Z)

and µ ∈ Hn(X;Z) ∼= Q respectively, get mapped to the same element in Hn(BSO(m)(0);Z).

The composite :

πn+m(Tγm(0))→ Hn+m(Tγm(0);Z)→ Hn(BSO(m)(0);Z)
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is a isomorphism, since the Hurewicz map is a isomorphism here. Thus the claim is verified.

We haved proved that the inner-most square of Thom spaces in the main digram is a

homotopy cartesian square. Now since β and cX map to the same element, by the Mayer-

Vietoris sequence of the homotopy cartesian square, there exists a class α ∈ πm+n(Tξm)

such that α gets mapped to cX . So under the Hurewicz and Thom map, α gets mapped

to pr1
−1
∗ µ ∈ Hn(PB;Z). Using this class α to perform Thom-Pontryagin construction, we

obtain a degree 1 normal map (g, ĝ) : (M,νM ) → (PB, ξ) where g∗[M ] = pr1
−1
∗ µ. Then

f∗[M ] = µ for f = pr1 ◦ g : M → X, which completes the proof of Lemma 3.2.2. �

3.3. Surgery obstruction

Given any choice of cohomology classes pi ∈ H4i(X;Q), Lemma 3.2.1 constructs a ra-

tional nonzero degree normal map (g, ĝ) : (M,νM ) → (PB, ξ). If we specify a choice of

fundamental class µ ∈ Hn(X;Q) and assume condition (iii) in Theorem 3.1.1, Lemma 3.2.2

constructs a degree 1 normal map such that g∗[M ] maps to µ through the localization

pr1 : PB → X. Now we claim that by conditions (i) and (ii) in Theorem 3.1.1, one can

perform surgery on the normal map to get a rational homotopy equivalence.

Case 1: σ(X) = 0

Suppose condition (ii) holds true, i.e. there exists a choice of fundamental class µ ∈

H4k(X;Q) such that the intersection form on H2k(X;Q) with respect to µ is isomorphic

to m〈1〉 ⊕ m〈−1〉. Since σ(X) = 0, the form is hyperbolic with respect to any nonzero

fundamental class of X, which is a rational multiple of µ. Then in this case, a rational

nonzero degree normal map constructed by Lemma 3.2.1 is sufficient. Since pr1 : PB → X

is a rational homotopy equivalence, the symmetric form on H2k(PB;Q) with respect to
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g∗[M ] ∈ Hn(PB;Z) is also hyperbolic. By condition (i),

0 = 〈Lk(p1, . . . , pk), f∗[M ]〉 = 〈Lk(f∗p1, . . . , f∗pk), [M ]〉

= 〈Lk(p1(τM ), . . . , pk(τM )), [M ]〉

= σ(M)

which implies that the symmetric form on H2k(M,Q) is hyperbolic too. Thus the surgery

obstruction vanishes.

Case 2: σ(X) 6= 0

In this case, we use the candidate degree 1 normal map constructed in Lemma 3.2.2,

which has the desired property that f∗[M ] = µ. Condition (ii) guaranteed that the in-

tersection form (H2k(X,Q), λ) is contained in the image of the map W (Z) → W (Q). In

terms of the L-group, condition (ii) guaranteed that the intersection form (H2k(X,Q), λ)

has a vanishing Z2 and Z4 summands in L4k(Q), so the isomorphism class of the form is

solely determined by its signature. By condition (i), we have σ(M) = σ(X). So the forms

(H2k(M,Q), λ) and (H2k(X,Q), λ) are stably isomorphic, hence the surgery obstruction

vanishes. �

In dimensions n 6≡ 0 (mod 4), we have the following version of the realization theorem.

Corollary 3.3.1. For n 6≡ 0 (mod 4), let X be an n dimensional simply-connected, Q-

local, Q-Poincaré complex. There always exists an n-dimensional simply-connected smooth

closed manifold M which realizes the rational homotopy type of X. From any choice of co-

homology classes pi ∈ H4i(X;Q), surgery theory constructs a rational homotopy equivalence

f : M −→ X such that f∗pi = pi(τM )

Proof. First notice that when n 6≡ 0 (mod 4), Ln(Q) = 0, so the surgery obstruction

always vanishes. Then the rational nonzero degree normal map (g, ĝ) : (M,νM )→ (PB, ξ)

constructed in Lemma 3.2.1 is sufficient to give a rational homotopy equivalence f = pr1◦g :

M → X such that f∗pi = pi(τM ).

�
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3.4. Rational homotopy CP2n

By the rational surgery existence theorem, given any simply-connected Q-local, Q-

Poincaré complex X, we can find all the possible Pontryagin numbers of closed smooth

manifolds that are rational homotopy equivalent to X. As an application, we will study

closed smooth manifolds which are rational homotopy equivalent to CP2n in terms of their

Pontryagin numbers, and compare with the possible Pontryagin numbers of manifolds that

are homotopy equivalent to CP2n.

We first construct the localization space CP2n
(0) as in Example 1.2.9. Theorem 3.1.1

states that for any choice of cohomology classes pi ∈ H4i(CP2n;Q) and a fundamental class

µ ∈ H4n(CP2n
(0);Q) ∼= Q which satisfy:

(i) 〈Ln(p1, p2, · · · , pn), µ〉 = ±1

(ii) The intersection form λ : H2n(CP2n;Q) ×H2n(CP2n;Q) → Q with respect to µ is

isomorphic to a form m〈1〉 ⊕ n〈−1〉 with m and n integers.

(iii) There exists a closed 4n dimensional manifold N such that 〈pI(τN ), [N ] = 〈pI , µ〉

for all partitions I of n.

Surgery theory will construct a smooth closed manifold M rational homotopy equivalent

to CP2n with Pontryagin numbers pI(τM )[M ] = 〈pI , µ〉.

3.4.1. Rational homotopy CP4. Let α be a generator in H2(CP4;Z) such that

〈α2, [CP4]〉 = 1. Condition (ii) requires a generator qα2 ∈ H4(CP4,Q) and a choice of fun-

damental class µ = p [CP4] for some rational numbers p, q, such that 〈qα2 ∪ qα2, p[CP4]〉 =

q2p = ±1, which means p = ± 1
q2

. So without loss of generality, we assume µ = ±p2[CP4]

for some rational number p.

Since the smooth oriented cobordism group ΩSO
8
∼= 〈CP2×CP2〉⊕〈CP4〉, for any smooth

closed 8-dimensional manifold N , there exists k, l ∈ Z such that p21[N ] = kp21[CP2 × CP2] + lp21[CP4] = 18k + 25l

p2[N ] = kp2[CP2 × CP2] + lp2[CP4] = 9k + 10l



3. SIMPLY-CONNECTED RATIONAL SURGERY 27

Then condition (iii) requires the existence of p1, p2 ∈ H∗(CP4,Q) and µ ∈ H8(CP4,Q)

such that 

5 | 〈p21, µ〉 − 2〈p2, µ〉

9 | 2〈p21, µ〉 − 5〈p2, µ〉

〈p21, µ〉 ∈ Z

〈p2, µ〉 ∈ Z

We can write p1 = aα2 for some nonzero rational number a, then p21 = a2α4 ∈

H8(CP4,Q), and p2 = bα4 for some nonzero rational number b. Then 〈p11, µ〉 = ±a2p2,

〈p2, µ〉 = ±bp2. Now let x2 = a2p2, y = bp2, then conditions (i),(ii), and (iii) together

requires the existence of integers x and y such that:
〈L2(p1, p2), µ〉 = 1

45(7y − x2) = ±1

5 | x2 − 2y

9 | 2x2 − 5y

which has infinitely many solutions. Note that the solutions (x2, y) to the above system

of diophantine equations are exactly all possible Pontryagin numbers (p11[M ], p2[M ]) for

a smooth closed manifold that is rational homotopy equivalent to CP4. Since Pontryagin

numbers are homeomorphism invariants, these manifolds fall into infinitely many homeo-

morphism types.

Remark 3.4.1. In the CP4 case, the signature condition and the integrality of the

Pontryagin numbers ensure the congruence relations, i.e. condition (iii) is automatically true

by conditions (i) and (ii). This happens in dimension 8 essentially because the characteristic

numbers s11[CP2 × CP2] and s2[CP4] are coprime. In the case of CP2n, for n > 2, we do

not have such simplification.

3.4.2. Rational homotopy CP6. For CP6, to satisfy condition (ii), we again assume

µ = ±p2[CP6] for some rational number p. We can write p1 = aα2, p2 = bα4 and p3 = cα6

for rational numbers a, b and c, then p31 = a3α6; , p1p2 = abα6, and we have 〈p31, µ〉 = ±a3p2,

〈p1p2, µ〉 = ±abp2 and 〈p3, µ〉 = ±cp2. To find all possible pI [M ] for M a rational homotopy

CP6, we can assume p = 1, then conditions (i),(ii) and (iii) together require the existence
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of integers a, b and c such that:

〈L3(p1, p2, p3), µ〉 = 1
945(62a3 − 13ab+ 2c) = ±1

27 | 7a3 − 23ab+ 28c

15 | − 6a3 + 19ab− 21c

7 | a3 − 3ab+ 3c

In this CP6 case, the signature condition (i) would not guarantee condition (iii). In

dimension 12, the characteristic numbers s1,1,1[CP2 × CP2 × CP2], s1,2[CP2 × CP4] and

s3[CP6] are not coprime.

3.4.3. Comparison between rational homotopy and homotopy CP4. One can

determine the set of Pontryagin numbers for manifolds that are rational homotopy equiv-

alent but not homotopy equivalent to the complex projective space. We will need the

following concept of splitting invariant and a theorem relating them with the Pontryagin

classes.

Definition 3.4.2. [S3][L1]Let h : M2n → CPn be a degree 1 normal map from a

PL manifold M2n to CPn. One can perturb h within its homotopy class so that h is

transverse regular to the submanifold CPk ⊂ CPn and N2k = h−1(CPk) is a PL manifold

for k = 1, . . . , n− 1. Let

θk(N
2k → CPk) ∈ L2k(Z)

be the surgery obstruction to make h|N2k normally bordant to a homotopy equivalence.

Then the splitting invariant is defined to be

σk(h) = θk ∈ L2k(Z)

for k = 1, . . . , n

Remark 3.4.3. [S3][L1] The normal structure set NPL(CPn) ∼= [CPn, G/PL] is isomor-

phic to
∏n
k=2 L2k(Z), and the PL surgery problems with range CPn is determined by the

splitting invariants (σ2, σ3, . . . , σn). Furthermore all such invariants are realizable.
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Let h : M2n → CPn be a homotopy equivalence from a PL manifold M2n to CPn with

splitting invariants (σ2, σ3, . . . , σn) where σn = 0. In [L1], Robert D. Little proved the

following theorem

Theorem 3.4.4. [L1, Theorem 3.1] With the above hypothesis, there exist universal

polynomials ai in Q[x1, x2, . . . , xi], i ≥ 0, such that a0 = 1, ai(0, 0, . . . , 0) = 0, i ≥ 1, and if

1 ≤ i ≤ [12n], the rational Pontryagin classes

pi(M
2n) =

i∑
k=0

(
n+ 1 − k

i− k

)
ak(σ2, σ4, . . . , σ2k)h

∗y2i

where y is a generator in H2(CPn;Q).

In the proof, the author provided a method of computing the polynomials ai in the

above theorem. In particular,

Lemma 3.4.5. [L1, Lemma 3.4] The first two polynomials ai are given by:

a1(σ2) = 24σ2, a2(σ2, σ4) =
1

7
(360σ4 + 576σ22 − 432σ2)

Take CP4 for example. Applying the above theorem and lemma, we have the follow-

ing relation between the Pontryagin numbers of any PL manifold M8 with a homotopy

equivalence h : M8 → CP4 and the splitting invariant σ2 of h: p21[M
8] = (24σ2 + 5)2

p2[M
8] = 1

7(576σ22 + 240σ2 + 70)

In [L2, Theorem 1.1], the author proved that a PL homotopy CP4 is smooth if and only

if σ2 ≡ 0 (mod 14) or 6 (mod 14). Plugging-in these two congruences into the above equa-

tions, the possible Pontryagin numbers (p21, p2) for any smooth manifold that is homotopy

equivalent to CP4 are exactly the integers that satisfy p21 = 25 + 3360n+ 112896n2

p2 = 10 + 480n+ 16128n2

or  p21 = 22201 + 100128n+ 112896n2

p2 = 3178 + 14304n+ 16128n2
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for any integer n.

By our earlier discussion, the possible Pontryagin numbers for a manifold that is rational

homotopy equivalent to CP4 are exactly those satisfy the signature condition:

〈L2(p1, p2), µ〉 =
1

45
(7p2 − p21) = ±1

Comparing the two sets of equations, one can find the Pontryagin numbers that can

only be realized by a rational homotopy CP4 but never a homotopy one. For example,

(p21, p2) = (4, 7) is such a pair of numbers.

One can do similar comparison on higher CP2n’s.



CHAPTER 4

Rational analogs of projective planes

There exist four kinds of projective planes, which are the well-known real, complex,

quaternionic and octonionic projective planes. One can prove that there does not exist any

higher dimensional projective planes. i.e.

Fact 4.0.1. For n > 8, there does not exist any simply-connetced 2n dimensional closed

manifold M with

H∗(M ;Z) =

 Z ∗ = 0, n, 2n;

0 otherwise

This fact is a consequence of the well-known Hopf invariant one theorem. Suppose

there exists such a manifold M2n for n > 8. By [S, Theorem 6.1] and [M2, Theorem 3.5],

there exists a Morse function with the minimal number of critical points which gives a CW

complex X = e0 ∪ en ∪φ e2n that is homotopy equivalent to M . This indicates the existence

of a Hopf invariant 1 attaching map φ : S2n−1 → Sn. But the only maps with Hopf invariant

1 are the well known Hopf fibrations Sk−1 ↪→ S2k−1 → Sk for k = 1, 2, 4, 8.

Ignoring the torsion, one can ask the existence of any rational analogs of projective

planes in higher dimensions. We will prove the following:

Theorem 4.0.2. After dimension 2,4,8,and 16, which are the dimension of RP2, CP2,

OP2 and HP2, the smallest next dimension where a rational analog of projective plane exists

is 32. i.e. there exist 32 dimensional smooth closed manifolds M such that

H∗(M ;Q) =

 Q ∗ = 0, 16, 32;

0 otherwise

and such manifolds fall into infinitely many homeomorphism types.

31
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Proof. First, notice that by the desired intersection form, such manifold only exists

in dimension 4k. So we can use Theorem 3.1.1 to study the existence of such manifold in

dimension 4k for k > 4.

We first construct a 4k dimensional Q-local, Q-Poincaré complex X, such that X has

the desired rational cohomology ring. Consider the following Postnikov tower of rational

principal fibration, let X → K(Q, 2k) be the principal fibration with fiber K(Q, 6k−1) and

k-invariant ι32k, i.e.

K(Q, 6k − 1)

��

// K(Q, 6k − 1)

��
X

��

// ∗

��
K(Q, 2k)

ι32k // K(Q, 6k)

The map ι32k : K(Q, 2k)→ K(Q, 6k) induces a morphism between the spectral sequences

of the two corresponding fibrations:

Hp(K(Q, 6k);Hq(K(Q, 6k − 1);Q))⇒ Hp+q(∗;Q)

6k − 1 ι6k−1

ι6k

2k 4k 6k

Hp(K(Q, 2k);Hq(K(Q, 6k − 1);Q))⇒ Hp+q(X;Q)

6k − 1 ι6k−1

ι2k ι22k ι32k

2k 4k 6k

In the first spectral sequence, the class ι6k−1 is killed by a differential dk(ι6k) = ι6k−1,

which implies that in the second spectral sequence, ι6k−1 is also killed at the stage. So we
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have:

H∗(X;Q) =

 Q ∗ =0, 2k, 4k;

0 otherwise

with signature σ(X) = ±1 by construction.

Now we can apply Theorem 3.1.1. For k > 4, we require a choice of cohomology classes

pi ∈ H4i(X;Q), i = k
2 , k, and a fundamental class µ ∈ H4k(X;Q) ∼= Q such that

(i) 〈Lk(· · · , p k
2
, · · · , pk), µ〉 = ±1

(ii) The symmetric form on H2k(X;Q) with respect to µ is isomorphic to m〈1〉⊕n〈−1〉.

(iii) There exists a closed 4k dimensional manifold N such that

〈pI(τN ), [N ]〉 = 〈pI , µ〉

for all partitions I of k.

When k is odd, the Pontryagin classes pi is nonzero only when i = k. Then condition

(i) requires:

〈Lk(0, · · · , 0, pk), µ〉 =
p

q
〈pk, µ〉 = ±1

where p
q is a fraction with numerator p 6= ±1 (Remark 1.5.8). At the same time, condition

(iii) requires 〈pk, µ〉 to be an integer. So the two conditions can never be both satisfied.

Thus there does not exist any simply-connected smooth closed manifold as a rational analog

of projective plane in dimension 4k with k odd. The next candidate dimension is 4k = 24.

We will first make condition (iii) explicit enough for computation. The following Hattori-

Stong theorem says that the integrality conditions from the Riemann-Roch Theorem to-

gether with the integrality of the Pontryagin classes give all the relations on the Pontryagin

numbers of smooth closed manifolds. This would provide us a schematic way to compute

the congruence relations required by condition (iii).

Theorem 4.0.3. [St2, Theorem 3] The image of the homomorphism

τ : ΩSO
∗ /tor → H∗(BSO;Q)
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is a lattice in H∗(BSO;Q). It consists exactly the elements x ∈ H∗(BSO;Q) such that: 〈Z[e1, e2, · · · ] · L, x〉 ∈ Z[12 ]

〈Z[p1(γ), p2(γ), · · · ], x〉 ∈ Z

where ei is the i-th elementary symmetric function of the variables exj + e−xj − 2, and

xj ∈ H2(BSO;Q) are the classes in the formal expression of the total Pontryagin class of

the universal bundle p(γ) = Π(1 + x2j ).

The possible Pontryagin numbers pI [M ] of any smooth closed manifold are exactly the

numbers 〈pI(γ), x〉, where x is contained in the image of the homomorphism

τ : ΩSO
∗ /tor → H∗(BSO;Q)

So the integrality conditions in the Hattori-Stong theorem provide exactly the congruence

relations required by condition (iii).

In our case, the desired 4k dimensional manifold has possibly nonzero Pontryagin classes

only in dimension 2k and 4k. We rewrite the cohomology clases ei in the above integrality

conditions as expressions involving only the Pontryagin classes p k
2

and pk, assuming that

all the other Pontryagin classes are zero.

In dimension 24, the nonzero ei classes are

e1 = 1
120p3 + 1

79833600p
2
3 − 1

39916800p6

e2 = −1
4p3 + 11

1209600p
2
3 + 31

604800p6, e1e1 = 1
14400p

2
3

e3 = p3 + 1
30240p

2
3 − 4

945p6, e1e2 = − 1
480p

2
3,

e4 = 19
240p6, e1e3 = 1

120p
2
3, e2e2 = 1

16p
2
3

e5 = −1
2p6, e2e3 = −1

4p
2
3

e6 = p6, e3e3 = p23

For the signature condition (i), we can compute, as in Example 1.5.5, the total L class

up to dimension 24 as a expression involving only p3 and p6:

L(0, . . . , 0, p3, 0, . . . , 0, p6) = 1 + L3 + L6 = 1 +
62

945
p3 −

40247

638512875
p23 +

2828954

638512875
p6

Now we are ready to compute the congruence relations required by condition (iii) ex-

plicitly. Plug in the above expressions of the ei classes into the integrality conditions in the
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Hattori-Stong theorem and simplify the coefficients, condition (iii) is equivalent to require a

choice of cohomology classes p3 ∈ H12(X;Q) ∼= Q, p6 ∈ H24(X;Q) ∼= Q and a fundamental

class µ ∈ H24(X;Q) such that the following congruence relations hold.

〈 40247
638512875p

2
3 − 2828954

638512875p6, µ〉 ∈ Z[12 ]

〈 43649
79833600p

2
3 − 1

39916800p6, µ〉 ∈ Z[12 ]

〈 19829
1209600p

2
3 − 31

604800p6, µ〉 ∈ Z[12 ]

〈 3976048p
2
3 + 4

945p6, µ〉 ∈ Z[12 ]

〈 1
14400p

2
3, µ〉 ∈ Z[12 ]

〈 19240p6, µ〉 ∈ Z[12 ]

〈p23, µ〉 ∈ Z

〈p6, µ〉 ∈ Z

Let α be a nonzero element in H12(X,Q) ∼= Q, we can write p3 = aα, p23 = a2α2

and p6 = bα2 for some nonzero rational number a and b. Let [X] ∈ H24(X,Q) ∼= Q be a

fundamental class such that 〈α∪α, [X]〉 = 1. Condition (ii) requires a choice of fundamental

class µ ∈ H24(X;Q) such that µ = ±p2[X] for some rational number p. Let x and y be the

integers such that x2 = a2p2, y = bp2, then 〈p23, µ〉 = ±x2, 〈p6, µ〉 = ±y. Then conditions

(i),(ii) and (iii) together are equivalent to require the existence of integers x and y such

that: 

〈L6(0, 0, p3, 0, 0, p6), µ〉 = ±( 40247
638512875x

2 − 2828954
638512875y) = ±1

155925 | 43649x2 − 2y

4725 | − 19829x2 + 62y

945 | 1985x2 − 128y

225 | x2

15 | y

One can compute by hand using quadratic reciprocity or simply use Mathematica to

check that the Diophantine equation from the signature condition (i) has no solution in

this dimension. So there does not exist any 24 dimensional simly-connected smooth closed

manifold such that H∗(M ;Q) ∼= Q for ∗ = 0, 12, 24 and zero otherwise. Thus there does

not exist any rational analog of projective plane in dimension 24.
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Remark 4.0.4. One can still ask if there exist any 24 dimensional piecewise linear or

topological closed manifold which is a rational analog of projective planes. Theorem 3.1.1

still works for the PL or TOP category. And there is a PL version Hattori-Stong theorem

charactering the image of the map τ : ΩPL
∗ /tor → H∗(BPL;Q), which is discussed in [MM].

Now we go up to the next candidate dimension, which is 32. The only possible nonzero

Pontryagin classes of the desired 32 dimensional manifold are p4 and p8. Rewriting the

nonzero ei classes in the Hattori-Stong theorem as expressions involving only p4 and p8, we

have:



e1 = − 1
5040p4 + 1

2615348736000p
2
4 − 1

1307674368000p8

e2 = 1
40p4 + 3119

435891456000p
2
4 + 5461

217945728000p8, e1e1 = 1
25401600p

2
4

e3 = −1
3p4 + 19

39916800p
2
4 − 31

2851200p8, e1e2 = − 1
201600p

2
4,

e4 = p4 + 1
1209600p

2
4 + 457

604800p8, e1e3 = 1
15120p

2
4, e2e2 = 1

1600p
2
4

e5 = − 43
2520p8, e1e4 = − 1

5040p
2
4, e2e3 = − 1

120p
2
4,

e6 = 29
180p6, e2e4 = 1

40p
2
4, e3e3 = 1

9p
2
4

e7 = −2
3p8, e3e4 = −1

3p
2
4

e8 = p8, e4e4 = p24

For the signature condition (i), we can compute the total L class up to dimension 32 as an

expression involving only p4 and p8:

L(0, . . . , 0, p4, 0, . . . , 0, p8) = 1+L4+L8 = 1+
381

14175
p4−

444721

162820783125
p24+

118518239

162820783125
p8

Plug in the above expressions of the ei classes into the integrality conditions in the

Hattori-Stong theorem and simplify the coefficients, condition (iii) requires a choice of co-

homology classes p4 ∈ H16(X;Q), p8 ∈ H32(X;Q) and a fundamental class µ ∈ H32(X;Q)

such that the following congruence relations are satisfied.
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〈1 · L, µ〉 = 〈− 444721
162820783125p

2
4 + 118518239

162820783125p8, µ〉 ∈ Z[12 ]

〈e1 · L, µ〉 = 〈 1992521
373621248000p

2
4 + 1

1307674368000p8, µ〉 ∈ Z[12 ]

〈e2 · L, µ〉 = 〈 292903727
435891456000p

2
4 + 5461

217945728000p8, µ〉 ∈ Z[12 ]

〈e3 · L, µ〉 = 〈− 357613
39916800p

2
4 − 31

2851200p8, µ〉 ∈ Z[12 ]

〈e4 · L, µ〉 = 〈 32513
1209600p

2
4 + 457

604800p8, µ〉 ∈ Z[12 ]

〈e1e1 · L, µ〉 = 〈 1
25401600p

2
4, µ〉 ∈ Z[12 ]

〈e5 · L, µ〉 = 〈 43
2520p8, µ〉 ∈ Z[12 ]

〈p24, µ〉 ∈ Z

〈p8, µ〉 ∈ Z

Similar as the setup in dimension 24, let x and y be the integers such that 〈p24, µ〉 = ±x2

and 〈p8, µ〉 = ±y. Conditions (i),(ii) and (iii) together require the existence of integers x

and y such that:



〈L8(0, 0, 0, p4, 0, 0, 0, p8), µ〉 = ±(− 444721
162820783125x

2 + 118518239
162820783125y) = ±1

638512875 | 13947647x2 + 2y

212837625 | 292903727x2 + 10922y

155925 | 357613x2 + 434y

4725 | 32513x2 + 914y

99225 | x2

315 | y.

One can compute by hand using quadratic reciprocity or simply use Mathematica to

check that the above system of Diophantine equations has infinitely many solutions. For

example,

x = 493965360, y = 915578185531275.

is one pair of solution. Note that distinct solutions of integers x and y correspond to

distinct pairs of Pontryagin numbers of the realizing manifold. Since Pontryagin numbers

are homeomorphism invariants, the resulting 32 dimensional smooth closed manifolds which

are rational analogs of projective planes fall into infinitely many homeomorphism types. �
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Remark 4.0.5. As another approach to compute the congruence relations satisfied by

the Pontryagin numbers of all the smooth closed manifolds in dimension 4k, we can compute

the Pontryagin numbers of a set of manifolds as a basis of the torsion-free part of the 4k

dimensional oriented cobordism group.

The torsion free part of the oriented cobordism ring is a polynomial ring generated by

a set of smooth closed manifolds in dimension 4k’s:

ΩSO
∗ /tor ∼= Z[M4,M8, . . .]

where the generator M4k can be taken to be any manifold satisfying the following charac-

teristic number property [St1]:

sk(p1, . . . , pk)[M
4k] =

 ±q if 2k + 1 is a power of the prime q;

±1 if 2k + 1 is not a prime power

Pontryagin numbers are oriented cobordism invariants. If we obtain the Pontryagin

numbers of a set of manifolds which is a basis of ΩSO
4k /tor, condition (iii) can be rewritten

explicitly as a set of congruence relations. Since sk[CP2k] = 2k + 1, in many of the 4k

dimensions (when 2k + 1 = q with q a prime), CP2k qualifies as a generator. For example,

in dimension 8,

ΩSO
8
∼= 〈CP2 × CP2〉 ⊕ 〈CP4〉

For any smooth closed 8-dimensional manifold N , each Pontryagin number of N is a

linear combination of the corresponding Pontryagin number of CP2 × CP2 and CP4, i.e.


p11[N ] = kp1,1[CP2 × CP2] + `p1,1[CP4] = 18k + 25`

p2[N ] = kp2[CP2 × CP2] + `p2[CP4] = 9k + 10`

with k, ` ∈ Z. So in this dimension, condition (iii) in Theorem 3.1.1 requires a choice of

p1, p2 ∈ H∗(X,Q) and µ ∈ H8(X(0);Q) such that the following congruence relations hold:
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5 | 〈p1,1, µ〉 − 2〈p2, µ〉

9 | 2〈p1,1, µ〉 − 5〈p2, µ〉

〈p1,1, µ〉 ∈ Z

〈p2, µ〉 ∈ Z

In dimensions such as 4k = 16 and 4k = 28, CP2k does not satisfy the characteristic

number property, so the complex projective plane does not qualify as a generator in these

dimensions. In fact, the disjoint union of CP2k and certain complex hypersurfaces can be

taken as the generator in these dimensions .

Lemma 4.0.6. [M1, Part 4] If m,n > 1, then for Hm,n as hypersurface of degree (1, 1)

in CPm × CPn

s2k(c)[Hm,n] = −(m+ n)!

m!n!

where s2k(c) is the s2k characteristic number of the Chern classes.

We also have the following lemma relating the Chern classes and the Pontryagin classes:

Lemma 4.0.7. [MS, Problem 16-C] If 2i1, . . . , 2ir is a partition of 2k into even integers,

the 4k-dimensional characteristic class s2i1,...,2ir(c(ω)) of a complex vector bundle ω is equal

to the characteristic class si1,...,ir(p(ωR)) of its underlying real vector bundle. In particular,

s2k(c(ω)) = sk(p(ωR))

Then for fixed 2k + 1 = m + n, one can compute the desired characteristic number of

all the complex hypersurfaces Hm,n:

sk(p)[Hm,n] = −(m+ n)!

m!n!
= −

(
m+ n

m

)
= −

(
2k + 1

m

)
On the other hand, the greatest common divisor of the numbers

(
2k + 1

m

)
for 1 ≤ m ≤ k

is 1 when 2k+1 is not a prime power [M1, Part 4]. So for each 4k dimension, we can choose

the generator of the cobordism ring to be a disjoint union of certain complex hypersurfaces

(possibly including CP2k) so that it has the desired sk number.
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For example, in dimension 4k = 16

s4(p)[9CP8 +H3,6] = −3

and in dimension 4k = 28

s7(p)[−85CP14 − 16H3,12 + 2H5,10] = −1

After we obtain the generating manifolds of the cobordism ring in each candidate dimen-

sion 4k, we will need to compute all the Pontryagin numbers pI for a set of basis manifolds

to get the congruence relations in the candidate dimension. This is a huge computation.



CHAPTER 5

Non-simply-connected rational surgery

We prove the rational surgery existence theorem in the case where the fundamental

group of the starting local space is a finite group. We apply this theorem to study the

realization problems for certain family of rational cohomology algebras.

5.1. Existence theorem

Theorem 5.1.1. Given an n = 4k dimensional, Q-local, Q-Poincaré complex X, with

π1(X) = π a finite group and trivial orientation character ω, there exists a smooth closed

4k dimensional manifold M , and a Q-homotopy equivalence f : M −→ X such that f∗pi =

pi(τM ) if and only if:

Case 1: The signature σ(X) = 0

There exists cohomology classes pi ∈ H4i(X;Q), 1 ≤ i ≤ k and a fundamental class

µ ∈ H4k(X;Q) such that:

(i) Lk(p1, . . . , pk) = 0 ∈ H4k(X;Q)

(ii) The intersection form H2k(X̃;Q)×H2k(X̃;Q)→ Q defined as 〈· ∪ ·, τ∗µ〉 admits an

π-invariant lagrangian, where τ∗ : H∗(X;Q) → H∗(X̃;Q) is the homology transfer homo-

morphism.

(iii) ∀g ∈ π1(X)− {e},

∑
(−1)i(tr(g∗ : Hi(X̃;Q)→ Hi(X̃;Q))) = 0

Case 2: The signature σ(X) 6= 0

There exists cohomology classes pi ∈ H4i(X;Q), 1 ≤ i ≤ k, and a fundamental class

µ ∈ H4k(X;Q) ∼= Q such that

(i) 〈Lk(p1, . . . , pk), µ〉 = σ(X)

41
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(ii) For the intersection form λ : H2k(X̃;Q) × H2k(X̃;Q) → Q defined as 〈· ∪ ·, τ∗µ〉

is the homology transfer homomorphism, (H2k(X̃;Q), λ) ⊕ σ(X)〈−1〉 admits an invariant

lagrangian, where the form 〈−1〉 : Qπ ×Qπ → Q is defined as (a, b) 7→ −tre(ba).

(iii) There exists a closed smooth 4k dimensional manifold N such that

〈pI(τN ), [N ]〉 = 〈pI , µ〉

for all partitions I of k.

(iiii) ∀g ∈ π1(X)− e,∑
(−1)i(tr(g∗ : Hi(X̃;Q)→ Hi(X̃;Q))) = 0

If the choice of cohomology classes pi and fundamental class µ satisfy all the above

conditions ((i), (ii) and (iii) in case 1; (i),(ii), (iii) and (iiii) in case 2 ), surgery theory

will construct a Q-homotopy equivalence f : M → X which satisfies f∗pi = pi(τM ), where

pi(τM ) are the Pontryagin classes of the tangent bundle of M , and in case 2, the Pontryagin

numbers pI [M ] = 〈pI , µ〉 for all partitions I of k.

Proof. (=⇒) Assuming there exists a smooth closed manifold M realizing the rational

homotopy type of X, one can check that conditions (i),(ii) and (iii) hold true. By Lemma

2.1, condition (iiii) is a necessary and sufficient condition for X to have a rational homotopy

type of a finite CW complex.

(⇐=):

5.1.1. Rational degree 1 normal map. The proof of the existence of rational degree

1 normal map is similar to the simply-connected case. But instead we begin with the map

p× u : X → BSO(m)(0) ×Bπ

where u : X → Bπ is the classifying map for the universal cover X̃. And we obtain the

following diagram similar to the one in the simply-connected case.

If we are in the case that σ(X) = 0, a nonzero degree normal map is enough. Similar

to the simply-connected case, we can find a class α ∈ πn+k(Tξm) which maps to a nonzero

class in Hn(X;Q). So we can perform the Thom-Pontryagin construction to get a nonzero

degree normal map.
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νM

��

// ξ

��

// γm−1 × ε

��
M

f !!

g // PB

pr1

��

pr2 // BSO(m)×Bπ

p

��
X

p×u // BSO(m)(0) ×Bπ

In the case of σ(X) 6= 0, condition (iii) guarantees the existence of a rational degree 1

normal map. The proof is similar to the simply-connected case.

There exists a closed manifold N such that for all partitions I of k

〈pI(τN ), [N ]〉 = 〈pI , µ〉 = 〈pI , p−1∗ ((p× u)∗µ)〉

which implies 〈pI(νN ), [N ]〉 = 〈pI(γm), p−1∗ ((p× u)∗µ)〉. Now since we assumed π is finite,

H∗(BSO ×Bπ;Q) ∼= H∗(BSO;Q) ∼= Q[p1, p2, · · · ]

Then since Hn(BSO(m)×Bπ;Q) ∼= Hom(Hn(BSO(m)×Bπ;Q),Q), the condition implies

that p−1∗ ((p× u)∗µ) lies in the image of the homomorphism

ν : ΩSO
n (Bπ)→ Hn(BSO ×Bπ;Q)

where for (M , f :M → Bπ)∈ ΩSO
n (Bπ), ν(M) = (νM × f)∗[M ] where νM is the classifying

map for the normal bundle of M . Here ε is the trivial 1-bundle over Bπ.

νM

��

// γ × ε

��
M

νM×f // BSO ×Bπ

Since T (γ × ε) = Tγ ∧ Tε = Tγ ∧ SBπ+

ΩSO
n (Bπ) ∼= lim

m→∞
πn+m(Tγm ∧Bπ+)

∼= lim
m→∞

πn+m(STγm−1 ∧Bπ+)

∼= lim
m→∞

πn+m(Tγm−1 ∧ SBπ+)

∼= lim
m→∞

πn+m(T (γm−1 × ε))
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Hence ν can also be interpreted as the map ν in the following diagram:

ΩSO
n (Bπ) ∼= limm→∞ πn+m(T (γm−1 × ε))

ν

��

h // limm→∞Hn+m(T (γm−1 × ε);Z)

∩U
��

Hn(BSO ×Bπ;Q)
i∗ // Hn(BSO ×Bπ;Z)

Now since p−1∗ ((p×u)∗µ) ∈ Im ν, there exists a class β ∈ πn+m(T (γm−1× ε)) such that

ν(β) = i∗(h(β) ∩ U) = p−1∗ ((p× u)∗µ) ∈ Hn(BSO ×Bπ;Z).

Similar to the simply-connected case, we can use Lemma 5.1 and Lemma 1.4 to prove

that the square of Thom spaces in the following diagram is a homotopy cartesian square.

Sξm //

��

��

S(γm−1 × ε)

��

vv
PB

pr2 //

pr1

��

��

BSO(m)×Bπ

p̃×Id

��

vv
Tξm

��

// T (γm−1 × ε)

��
T ν̃X // T (γm−1(0) × ε)

X
p×u //

BB

BSO(m)(0) ×Bπ

gg

ν̃X //

BB

S(γm−1(0) × ε)

gg

We can prove that there exists a class α ∈ πm+n(Tξm) such that α gets mapped to

pr1
−1
∗ µ ∈ Hn(PB;Z) under the Hurewicz and Thom map. Using this class α to perform

Thom-Pontryagin construction, we get a rational degree 1 normal map (g, ĝ) : (M,νM ) →

(PB, ξ) where g∗[M ] = pr1
−1
∗ µ, and then f∗[M ] = µ for f = pr1 ◦ g : M → X.
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5.1.2. Surgery obstruction. For the surgery obstruction part in the non-simply-

connected case, we need the following theorem relating the signature of a manifold to its

rational equivariant intersection form.

Theorem 5.1.2. [D, Theorem A] Let M2k be a free (G,ω)-manifold. Then the inter-

section form on Hk(M,Q) has an invariant Lagrangian if

(a) ω = 1 and σ(M/G) = 0, or

(b) ω 6= 1 and χ(M/G) is even.

In the case σ(X) = 0, condition (i) in Theorem 5.1.1 implies σ(M) = σ(X) = 0. Then

we apply Theorem 5.1.2 to the universal cover M̃ , so the intersection form on H2k(M̃,Q)

admits a Lagrangian. By condition (ii) in the main theorem, the intersection form on

H2k(X̃,Q) also admits a Lagrangian, so the rational intersection form on M̃ and X̃ are

isomorphic. Hence the surgery obstruction vanishes.

In the case σ(X)=m 6= 0, condition (i) in Theorem 5.1.1 implies σ(M) = m. Then we

have σ(M#mCP2) = 0. By Theorem 5.1.2, the intersection form (H2k(M̃,Q), λ)⊕m〈−1〉

admits a Lagrangian. By condition (ii) in Theorem 5.1.1, (H2k(X̃,Q), λ) ⊕ m〈−1〉 also

admits a Lagrangian. Then by Witt cancelation, the rational intersection form on M̃ and

X̃ are isomorphic. Hence the surgery obstruction vanishes.

In the case that σ(X) 6= 0, condition (ii) on the equivariant form can be verified directly

using the G-signature Theorem.

Theorem 5.1.3. [AS, Atiyah-Singer G-signature Theorem] Let M be a closed oriented

manifold of dimension 4k with a G-action. The intersection form

λ : H2k(M ;R)×H2k(M ;R)→ R

is a nonsingular G-invariant bilinear form.There exists a G-invariant decomposition

H2k(M ;R) = V+ ⊕ V−
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where V+ (V−) are the G-invariant positive (negative) definite subspaces of the symmetric

bilinear form λ. The G-signature is defined to be

σG(M) = [V+]− [V−] ∈ K̃0(RG)

If the G-action is free, σG(M) = 0.

Example 5.1.4. When G = Z2 = 〈t〉,

Q[Z2] ∼= Q+ ×Q−

Let

λ± : H2k(X̃;Q)± ×H2k(X̃;Q)± → Q

be the restriction of the intersection form λ on the two invariant subspaces respectively.

Then condition (ii) in Theorem 5.1.1 is equivalent to requiring that

(a) Each of the intersection forms λ+ and λ− is isomorphic to m〈1〉 ⊕ n〈−1〉.

(b) The G-signature

σZ2(X) = signature(λ+)[Q+] + signature(λ+)[Q−] = 0 ∈ K̃0(Q[Z2])

�

5.2. Applications

The non-simply-connected version of the rational surgery existence theorem can be used

to study the following realization question:

Given a Q-Poincaré duality algebra Λ∗ and a G-action on Λ∗, does there exist a closed

smooth manifold M with π1(M) = G and H∗(M̃ ;Q) ∼= Λ∗? This is equivalent to asking if

there exist a free G-action on a smooth closed manifold whose cohomology ring realizes the

given algebra with the action?

For G finite with the action preserving the orientation, we can apply Theorem 5.1.1 to

answer the above question as follows:

Step 1: Construct a simply-connected Q-local, Q-Poincaré complex Y with the specified

G-action on its cohomology ring H∗(Y ;Q) ∼= Λ∗.
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Step 2: Let the starting local space X in Theorem 5.1.1 be the homotopy orbit space of

Y , i.e. X = (EG× Y )/G. Then X is a Q-local, Q-Poincaré complex with π1(X) = G and

G acts freely on X̃ with H∗(X̃;Q) ∼= Λ∗.

Step 3: Check the conditions in Theorem 5.1.1.

Remark 5.2.1. It is possible that an algebra Λ∗ can be realized by more than one ra-

tional homotopy type. There is a special family of simply-connected commutative graded

algebras, called intrinsically formal algebras, which can be realized by exactly one ra-

tional homotopy type [FH], i.e. if a simply-connected commutative graded algebra Λ∗

is intrinsically formal, then for any two simply-connected spaces X and Y such that

H∗(X;Q) ∼= H∗(Y ;Q) ∼= Λ∗, X and Y are rational homotopy equivalent to each other.

We will study the realization question on a special family of rational Poincaré duality

algebras (Q-PDA), which are called homogeneous artinian complete intersections.

Definition 5.2.2. A homogeneous artinian complete intersection A is a commutative

graded Q-algebra of the form

A = Q[x1, x2, . . . .xn]/I

where the variables xi have positive even degree |xi|, and the ideal I is generated by the

regular sequence

I = (f1, f2, . . . , fn)

where fi are homogeneous polynomials of degree |fi| = 2di. Such a algebra A∗ is a 1-

connected rational Poincaré duality algebra [FH], and it has formal dimension

m =

n∑
i=1

(|fi| − |xi|)

Definition 5.2.3. Here a sequence f1, f2, . . . , fn is called a regular sequence if for each

i = 1, 2, . . . , n, fi is not a zero divisor in Q[x1, x2, . . . , xn]/(f1, . . . , fi−1)

Example 5.2.4.

A∗ = Q[x, y]/(x2 + y2, x3y)
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with |x| = 2; |y| = 2 is a Q-Poincaré duality algebra of formal dimension

m = 4− 2 + 8− 2 = 8

Remark 5.2.5. [FH] Let Λ(V ) be a free, graded commutative algebra over a graded

Q vector space V , i.e. a tensor product of exterior algebra on odd generators and the

polynomial algebra on even generators. Let I be an ideal generated by a regular sequence.

Then any algebra of the form

Λ(V )/I

is intrinsically formal. In particular, any homogeneous artinian complete intersection A∗ is

intrinsically formal. So once we construct a local space Y whose rational cohomology ring

realizes A∗, Y also carries the unique rational homotopy data.

In [PL], the authors studied the homogeneous artinian complete intersections of formal

dimension 8. They classified such 8 dimensional Q-PDAs into 5 different cases in terms of

different sets of |fi| values (with all the possible values of the signature specified)

(I8) (|f1|, |f2|, |f3|, |f4|) = (4, 4, 4, 4); |σ| = 0, 2, 4, 6

(II8) (|f1|, |f2|, |f3|) = (4, 4, 6); |σ| = 0, 2, 4

(III8) (|f1|, |f2|) = (4, 8); |σ| = 0, 2

(IV8) (|f1|, |f2|) = (6, 6); |σ| = 1, 3

(V8) (|f1|) = (10); |σ| = 1

and proved that in each of the cases, all the possible signature values can be realized by

smooth closed manifolds, i.e. for each case above and each possible signtaure value σ, there

exists a smooth closed manifold M such that H∗(M ;Q) ∼= A∗ where A∗ belongs to the case

and σ(M) = σ.

We will now study the realization question in the non-simply-connected case. In partic-

ular, we study the question addressed at the beginning of the section for Q-PDAs belonging
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to the case (III8) above, i.e. of the form

A∗ = Q[x, y]/(f1, f2)

with |x| = |y| = 2 and |f1| = 4, |f2| = 8. We will find all the possible finite G-actions on A∗

such that there exists a free G-action on a smooth closed manifold whose cohomology ring

realizes A∗ with the specified action. As mentioned at the beginning of this section, this is

equivalent to asking for the existence of smooth closed manifold M such that π1(M) = G

and H∗(M̃ ;Q) ∼= A∗. This is a question that can be studied using the non-simply-connected

rational surgery existence theorem (Theorem 5.1.1).

One can check by direct computation that any Q-PDA of the form (III8) falls into one

of the following three different cases up to algebra isomorphism:

(i) f1 = xy, f2 = kx4 − y4 (k 6= 0)

(ii) f1 = y2, f2 = x4

(iii) f1 = kx2 − y2, f2 = x4 or f2 = `x4 − x3y (k 6= 0)

For each case, we will first check all the possible actions of finite groups on A∗ such that

the Lefschetz fixed point condition is satisfied. This determines the candidate finite groups

G and the G-action on A∗. Then we follow the three steps mentioned at the beginning of

the section.

Case (i): A∗ = Q[x, y]/(xy, kx4 − y4) with k 6= 0.

First notice that when k ≡ ±1 (mod Q∗4), A∗ is isomorphic to

H∗(CP4#CP4;Q) ∼= Q[x, y]/(xy, x4 − y4) or

H∗(CP4#CP4;Q) ∼= Q[x, y]/(xy, x4 + y4)

For any g of finite order that acts on A∗ with g =

(
a b

c d

)
on A2 ∼= Qx⊕Qy g · xy = 0

g · kx4 = g · y4
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which implies that

g =

(
±1 0

0 −1

)
when k 6≡ ±1 (mod Q∗4)

g =

(
±1 0

0 −1

)
,

(
0 ±1

±1 0

)
or

(
0 1

−1 0

)
when k ≡ ±1 (mod Q∗4)

Moreover, if we require the Lefschetz fixed point condition, the only possible nontrivial

finite action with Lefschetz number zero is

g =

(
−1 0

0 −1

)
So G = Z2, generated by g =

(
−1 0

0 −1

)
, is the only finite group that could possibly act

freely on a manifold whose cohomology ring realizes such A∗.

Then we construct a simply-connected Q-local, Q-Poincaré complex Y by a three-stage

Postnikov tower, realizing the desired cohomology ring A∗. First let Z → K(Q, 2) ×

K(Q, 2) be the principal fibration with fiber K(Q, 3) and k-invariant ιxιy ∈ H4(K(Q, 2)×

K(Q, 2);Q); this will kill the class xy in Q[x, y]. Let Y → Z be the principal fibration

with fiber K(Q, 7) and k-invariant kι4x − ι4y ∈ H8(Z;Q). Then we have H∗(Y ;Q) ∼=

Q[x, y]/(xy, kx4 − y4).

Now we can use the general fact [FHT, Section 17] that there exists a spatial realization

functor from the category of differential graded algebras to the category of CW complexes.

In our case, if we plug-in a Q-PDA A∗ with a G-action on it, the functor gives us a simply-

connected Q-local space Y with H∗(X) ∼= A∗ and a G-action on Y realizing the G-action

on A∗.

Let the starting local space X in Theorem 5.1.1 be the homotopy orbit space of Y .

i.e. X = (EZ2 × Y )/Z2. Then X is a Q-local, Q-Poincaré complex with π1(X) = Z2

and H∗(X̃;Q) ∼= A∗. By the property of the transfer homomorphism which says that for

π1(X) = G, H∗(X;Q) ∼= H∗(X̃;Q)G, we can compute that

H∗(X;Q) ∼= Q[α, β]/(αβ, kα2 − β2)

with |α| = |β| = 4, where α, β pull back to x2 and y2 in H4(X̃;Q).

Now we are ready to determine whether there exists a smooth closed manifold M re-

alizing the rational homotopy type of X by checking the conditions in Theorem 5.1.1. Let
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µ ∈ H8(X;Q) be the fundamental class such that 〈α2, µ〉 = 1, then the intersection form is(
1 0

0 k

)

with signature σ = 0 or 2. It is isomorphic to

(
1 0

0 ±1

)
if and only if k ≡ ±1 (mod Q∗2)

If the signature σ = 0, for condition (i) in Theorem 5.1.1, we can pick p1 = 0 ∈ H4(X;Q)

and p2 = 0 ∈ H8(X;Q), so

L2(p1, p2) = 0

for condition (ii), the equivariant intersection form H4(X̃;Q) ×H4(X̃;Q) → Q defined as

〈· ∪ ·, x3y〉 is hyperbolic if and only if

k ≡ −1 (mod Q∗2)

If the signature σ = 2, one can compute that the G-signature σZ2(X̃) 6= 0 ∈ K̃0(Q[Z2]),

so condition (ii) can not be satisfied. We have proved the following:

Theorem 5.2.6. For any Q-PDA A∗ of the form in Case (i), there exists a free Z2-

action on a smooth closed manifold whose rational cohomology ring realizes A∗ with the

action

(
−1 0

0 −1

)
on A2. And this Z2-action is the only possible finite action on A∗ that

can be realized by a free orientation-preserving action on a manifold whose cohomology ring

realizes A∗.

Case (ii): A∗ = Q[x, y]/(y2, x4)

First we notice that

Q[x, y]/(y2, x4) ∼= H∗(CP3 × S2;Q)

so any manifold whose cohomology realizes such A∗ is rational homotopy equivalent to

CP3 × S2.

As in Case (i), one can check that

g =

(
−1 0

0 −1

)
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is the only possible finite action on A∗ with Lefschetz number zero. So G = Z2 is the only

finite group that could possibly act freely on a manifold whose cohomology ring realizes

such A∗.

Notice that on CP3, the action

[x : y : z : t] 7→ [−y : x : −t : z]

gives a free action of order 2, together with the antipodal map on S2, this free Z2-action on

CP3 × S2 realized the Z2-action on the cohomology ring A∗ with generator g =

(
−1 0

0 −1

)
.

But we can still ask, does there exist a smooth closed manifold M such that there exists

a free Z2-action on M that realizes the action above on H∗(M ;Q) ∼= A∗ but M is not

homeomorphic to CP3 × S2? The answer is yes, and there exist manifolds which are not

obatined from the obvious construction of connecting sum with a rational homology sphere.

We follow the same procedure as in Case (i), constructing the local space Y which agrees

with the localization of CP3 × S2 and a corresponding Z2-action on it. Then we obtain the

starting local space X = (EZ2 × Y )/Z2, with π1(X) = Z2, H
∗(X̃;Q) ∼= A∗, and by the

transfer homomorphism,

H∗(X;Q) ∼= Q[α, β]/(α2, β2)

with |α| = |β| = 4, where α, β pull back to x2 and xy in H4(X̃;Q). Let µ ∈ H8(X;Q) be

the fundamental class such that 〈αβ, µ〉 = 1, then the intersection form is(
0 1

1 0

)
∼

(
1 0

0 −1

)
with signature σ = 0.

For condition (i) in Theorem 5.1.1, any Pontryagin class p1 ∈ H4(X;Q) can be written

as aα + bβ with a, b ∈ Q, any Pontryagin class p2 ∈ H8(X;Q) can be written as cαβ with

c ∈ Q. To satisfy condition (i), we seek p1, p2 such that

L2(p1, p2) = − 1

45
p21 +

7

45
p2 = (2ab+ c)αβ = 0

There are obviously infinitely many triples (a, b, c) that satisfy this identity, which can

realize infinitely many distinct pairs of Pontryagin numbers p1,1 = 2ab and p2 = c. For

condition (ii), the equivariant intersection form H4(X̃;Q) × H4(X̃;Q) → Q defined as
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〈· ∪ ·, x3y〉 is clearly hyperbolic. Then all these distinct Pontryagin numbers can be realized

by smooth closed manifold with distinct homeomorphism types.

We have proved the following theorem:

Theorem 5.2.7. For any Q-PDA A∗ of the form in Case (i), which is isomorphic

to H∗(CP3 × S2;Q) ∼= Q[x, y]/(y2, x4), there exists a free Z2-action on a smooth closed

manifold whose rational cohomology ring realizes A∗ with the action

(
−1 0

0 −1

)
on A2.

Such Z2-actions are the only possible finite action on A∗ that can be realized by a free

orientation-preserving action on a manifold whose ratioanl cohomology ring realizes A∗.

And the realizing manifolds fall into infinitely many homoemorphism types.

Case (iii1): A∗ = Q[x, y]/(kx2 − y2, x4) with k 6= 0.

First notice that when k ≡ 1 (mod Q∗2), A∗ is isomorphic to

H∗(CP4#CP4;Q) ∼= Q[x, y]/(xy, x4 + y4)

which was already discussed in Case (i). When k ≡ −1 (mod Q∗2), A∗ is isomorphic to

Q[x, y]/(x2 + y2, x4)

When k 6≡ ±1 (mod Q∗2), one can check that

g =

(
−1 0

0 −1

)
is the only possible finite action on A∗ with Lefschetz number zero. So G = Z2 is the only

finite group that could possibly act freely on a manifold whose cohomology ring realizes A∗.

When k = −1, i.e. the case A∗ ∼= Q[x, y]/(x2 + y2, x4)

g =

(
−1 0

0 −1

)
, g =

(
0 −1

1 0

)
or g =

(
0 1

−1 0

)
are the only possible finite actions on A∗ with Lefschetz number zero. So G = Z2, generated

by g =

(
−1 0

0 −1

)
, and G = Z4, generated by g =

(
0 1

−1 0

)
, are the only finite groups

that could possibly act freely on a manifold whose cohomology ring realizes such A∗.

We follow the same procedure as in the last two cases. Applying Theorem 5.1.1, all the

above G-actions can be realized. We have proved the following theorem:
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Theorem 5.2.8. For any Q-PDA A∗ of the form in Case (iii1), there exists a free

Z2-action on a smooth closed manifold whose rational cohomology ring realizes A∗ with

the action

(
−1 0

0 −1

)
on A2. This is the only possible finite action on A∗ with k 6≡ ±1

(mod Q∗2) that can be realized by a free orientation-preserving action on a manifold whose

rational cohomology ring realizes A∗.

Theorem 5.2.9. For Q-PDA A∗ = Q[x, y]/(x2 + y2, x4), there exists a free Z4-action

on a smooth closed manifold whose rational cohomology ring realizes A∗ with the action(
0 1

−1 0

)
on A2. This Z4-action together with the above Z2-action are the only possible

finite actions on this A∗ that can be realized by a free orientation-preserving action on a

manifold whose rational cohomology ring realizes such A∗.

Case (iii2): A∗ = Q[x, y]/(kx2 − y2, `x4 − x3y) with k 6= 0.

When k ≡ 1 (mod Q∗2), any A∗ in Case (iii2) is isomorphic to a Q-PDA of the form

in Case (iii1).

When k 6≡ ±1 (mod Q∗2), g =

(
−1 0

0 −1

)
on A2 is the only possible finite action on

A∗ with Lefschetz number zero. By condition (ii) in Theorem 5.1.1, this Z2-action can be

realized by a free action on a smooth closed manifold whose cohomology ring is A∗ if and

only if

`2 − k ≡ 1 (mod Q∗2)

When k ≡ −1 (mod Q∗2), any A∗ in Case (iii2) is isomorphic to a Q-PDA of the form

Q[x, y]/(x2 + y2, `x4 − x3y). Then

g =

(
−1 0

0 −1

)
, g =

(
0 −1

1 0

)
or g =

(
0 1

−1 0

)
are the only possible finite action on A∗ with Lefschetz number zero. By condition (ii) in

Theorem 5.1.1, the corresponding Z4-action can be realized by a free action on a smooth

closed manifold whose cohomology ring is A∗ if and only if

` = 0
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Theorem 5.2.10. For Q-PDA A∗ = Q[x, y]/(x2 + y2, x3y), there exists a free Z4-action

on a smooth closed manifold whose rational cohomology ring realizes A∗ with the action(
0 1

−1 0

)
on A2. This Z4 action is the only possible finite action on A∗ that can be

realized by a free orientation-preserving action on a manifold whose rational cohomology

ring realizes A∗.



CHAPTER 6

Rational surgery with π1 = Z

We will study the rational surgery realization problem in dimensions 4k+1 when π1 = Z.

I wish to give an realization theorem on a general case when the starting local space X is

a fibration over the circle. But at this point, I am only able to handle the case when

X = Y × S1 where Y is a 4k-dimensional Q-local space. The following theorem says that

X can be realized by a smooth closed manifold if and only if Y is realizable.

Theorem 6.0.1. Given a 4k+ 1 dimensional Q-local, Q-Poincaré complex X = Y ×S1

where Y is a 4k-dimensional simply-connected Q-local Q-Poincaré complex, there exists

a closed smooth 4k + 1 dimensional manifold M with π1(M) = Z, and a Q-homotopy

equivalence f : M −→ X if and only if:

There exist cohomology classes pi ∈ H4i(Y ;Q), 1 ≤ i ≤ k, and a fundamental class

µY ∈ H4k(Y ;Q) ∼= Q such that

(i) 〈Lk(p1, . . . , pk), µY 〉 = σ(Y )

(ii) The intersection form on H2k(Y ;Q) defined as 〈· ∪ ·, µY 〉 is isomorphic to a form

m〈1〉 ⊕ n〈−1〉 for some integers m and n.

(iii) There exists a closed smooth 4k+1 dimensional manifold M ′ and a map ν : M ′ → S1

such that

〈pI , µY 〉 = 〈pI(τM ′) ∪ ν∗α, [M ′]〉

for all partitions I of k. Here α ∈ H1(S1) is a generator.

Proof. (⇐=) If there exists a choice of cohomology classes pi ∈ H∗(Y ;Q) and a fun-

damental class µY satisfying the conditions (i),(ii) and (iii), by Theorem 3.1.1, there ex-

ists a manifold N and a rational homotopy equivalence g : N → Y . Then obviously,

g × Id : M = N × S1 → M = Y × S1 is a rational homotopy equivalence, so the rational

56
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homotopy type of X can be realized by the 4k + 1 dimensional closed smooth manifold

M = N × S1.

(=⇒): Suppose there exists a closed smooth 4k + 1 dimensional manifold M with

π1(M) = Z, and a Q-homotopy equivalence f : M −→ X. Then f induces an isomorphism

on cohomology f∗ : H∗(X;Q)
∼=−→ H∗(M ;Q), let pi = i∗piX where f∗piX = pi(τM ),

i = 1, . . . , k.

To prove condition (iii), let µY ∈ H4k(Y ;Q) be the fundamental class such that i∗µY =

u∗α ∩ µ, where µ = f∗[M ] and u : X = Y × S1 → S1 is the projection. Let M ′ = M and

ν = u ◦ f , then

〈pI , µY 〉 = 〈pIX ∪ u∗α, µ〉

= 〈pI(τM ) ∪ ν∗α, [M ]〉

For condition (i), notice that one can perturb the second coordinate of f = (f1, f2) :

M → X = Y × S1 so that u ◦ f : M → S1 is transverse regular to a point ∗ ∈ S1, let

N4k = (u ◦ f)−1(∗) be the transverse inverse image. Let i : N ↪→M be the inclusion, then

〈pI , µY 〉 = 〈Lk(p1, . . . , pk)) ∪ u∗α, µ〉

= 〈Lk(p1, . . . , pk) ∪ u∗α, f∗[M ]〉

= 〈Lk(f∗p1, . . . , f∗pk), f∗u∗α ∩ [M ]〉

= 〈Lk(p1(τM ), . . . , pk(τM )), i∗[N ]〉

= 〈Lk(p1(τN ), . . . , pk(τN )), [N ]〉

= σ(N)

= σ(Y ) (∗)

The last equality (∗) is a consequence of the following Lemma 6.0.2, and condition (ii) also

follows from Lemma 6.0.2.

Lemma 6.0.2. With the above settings, let

φN : H2k(N ;Q)×H2k(N ;Q)→ Q
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be the symmetric forms defined as 〈· ∪ ·, [N ]〉, and let

φY : H2k(Y ;Q)×H2k(Y ;Q)→ Q

be the symmetric forms defined as 〈· ∪ ·, µY 〉. Then in the Witt group,

[φN ] = [φY ]

.

Proof. We have the following commutative diagram:

NoO
ĩ′

��

//

��

YoO
ĩ

��

//

��

∗oO
��

��

M∞
f̃ //

��

Y × R ũ //

��

R

��

NoO
i′

��

// YoO
i

��

// ∗oO
��

M
f // Y × S1 u // S1

where M∞ is the infinite cyclic cover of M induced by the map exp : R → S1. As in

the base space level, in the covering space level, we can perturb the second coordinate

of f̃ = (f̃1, f̃2) : M∞ → Y × R so that the map ũ ◦ f̃ is transverse regular to the point

∗ = 0 ∈ R, then N̂ = (ũ ◦ f̃)−1(∗) is a 4k dimensional manifold that is homeomorphic to

N = (u ◦ f)−1(∗), we will also use N to denote N̂ . By construction, f̃ : M∞ → Y × R is a

proper rational homotopy equivalence.

As in the proof of Novikov conjecture for π = Z [D2], let:

φN⊂M∞ : H2k(M∞;Q)×H2k(M∞;Q)→ Q

be the symmetric bilinear form defined by φN⊂M∞(a′, b′) = 〈i′∗a′ ∪ i′∗b′, [N ]〉 for a′, b′ ∈

H2k(M∞;Q). And let

φY⊂Y×R : H2k(Y × R;Q)×H2k(Y × R;Q)→ Q

be the form defined by φY⊂Y×R(a, b) = 〈i∗a ∪ i∗b, µY 〉 for a, b ∈ H2k(Y × R;Q).
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In the base space level, we have the identity

f∗i
′
∗[N ] = f∗(f

∗u∗α ∩ [M ]) = u∗α ∩ f∗[M ] = u∗α ∩ µ = i∗µY

in H4k(X;Q) = H4k(Y ×S1;Q). Since the map H∗(Y ×R;Q)→ H∗(Y ×S1;Q) is injective,

up in the covering space level, we have f̃∗ĩ′∗[N ] = ĩ∗µY , which implies that

φY⊂Y×R ∼= φN⊂M∞

It is clear that φY ∼= φY⊂Y×R. Then to prove Lemma 6.0.2 which asserts [φN ] = [φY ],

all we need to show is that [φN ] = [φN⊂M∞ ] in the Witt group. The following three lemmas

will be used to prove this identity.

Lemma 6.0.3. [D2, Lemma 2.5] Let K be a compact set in X. Suppose X is filtered by

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X

Then there exist s an integer N so that for all n ≥ N ,

φK⊂X ∼= φK⊂Xn

Lemma 6.0.4. [D2, Lemma 2.6] Let X4k+1 be a manifold with compact boundary ∂X.

Then in the Witt group,

[φ∂X ] = [φ∂X⊂X ]

Proof. Let L = Im(i∗ : H2k(X,Q) → H2k(∂X;Q)). One can prove that L⊥ ⊂ L.

Then

φ∂X ∼ φ∂X |H(L⊥)⊥

∼ φ∂X |L/L⊥

∼ φ∂X |L

= φ∂X⊂X

�

Lemma 6.0.5. Suppose ∂X
i
↪→ X

i′
↪→ X ′ where ∂X is the disjoint union X1

∐
−X2.

Then the symmetric forms

φX1⊂X′
∼= φX2⊂X′
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Proof. For any a, b ∈ H2k(X ′;Q).

φ∂X⊂X′(a, b) = 〈i∗i′∗a ∪ i∗i′∗b, [∂X]〉

= 〈i∗i′∗a, i∗i′∗b ∩ ∂∗[X]〉

= 〈i∗i′∗a, ∂∗(i′∗b ∩ [X]〉

= 〈δ∗i∗i′∗a, b ∩ [X]〉

= 0

This implies that φ(X1
∐
−X2)⊂X′ = 0, so φX1⊂X′ = φX2⊂X′ . �

Now we go back to the proof of Lemma 6.0.2. Let M[x,y] = (ũ◦ f̃)−1[x, y] for any subset

[x, y] ⊂ R, and Nn = (ũ ◦ f̃)−1(n) for any integer n ∈ R. We have

φN ∼= φNN
(for N � 0, since NN ≈ N)

∼ φNN⊂M[−∞,N ]
(Lemma 6.0.3)

∼= φN⊂M[−∞,N ]
(Lemma 6.0.5, ∂M[0,N ] = NN t −N)

∼= φN⊂M∞ (Lemma 6.0.4)

Then we have

φN ∼ φN⊂M∞ ∼= φY⊂Y×R ∼= φY

which completes the proof of Lemma 6.0.2 .

�

Back to the proof of the necessary direction of Theorem 6.0.1, Lemma 6.0.2 implies that

the signature σ(N) = σ(Y ) and φY ∼ φN = m〈1〉⊕n〈−1〉, so conditions (i),(ii) and (iii) are

all satisfied. By Theorem 3.1.1, there exists a choice of cohomology classes pi ∈ H4i(Y ;Q)

and fundamental µY if and only if Y can be realized by a 4k dimensional simply-connetced

smooth closed manifold. So Theorem 6.0.1 implies that, for X = Y × S1, the rational

homotopy type of X can be realized by a closed manifold if and only if Y is realizable. �
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