Category Archives: Marine Debris

Sizing up Marine Debris

In 2013, COASST got its first grant to expand to a whole new data collection protocol – marine debris.  Following the tsunami of 2011 that resulted from the Tōhoku earthquake, this was a no brainer.  But debris had been on the minds of many COASSTers well before the flotsam from Japan hit our coastlines. In fact, many COASSTers have always gone to the beach armed with a trash bag.

It’s definitely a nuisance, and can also be a health hazard for humans and wildlife alike, but could it also be science?

Could regular monitoring uncover patterns of trash on our beaches?

That’s what Hillary Burgess, the COASST Science Coordinator was brought on to figure out.  And after years of development, input from more than 75 pilot testers, 30 interns, marine debris experts and the COASST staff and Advisory Board, we’ve not only got a viable program, we’re starting to “see” the patterns.

Hillary leading a marine debris training in Port Townsend, WA

This is the first blog in a series revealing what Marine Debris COASSTers are finding.  Not quite (!) as numerous as COASST Beached Birds, and certainly not as long in the tooth…, our marine debris program is off to a fantastic start.  As of mid-November here are the numbers:

  • 110 unique beaches surveyed
  • 341 small debris surveys
  • 432 medium debris surveys
  • 403 large debris surveys
  • 185 participants
  • 13,396 items characterized

COASST marine debris survey sites have been monitored most consistently for the longest time in North Puget Sound and Central Oregon.

Although COASST marine debris data comes from throughout Washington and Oregon, and even a few test sites in Alaska, we’re confining our analysis for the moment to two regions with a multi-year, multi-beach sample size, and some pretty interesting differences: the outer coast beaches of Central Oregon, and the protected waters of North Puget Sound.

First, let’s step back to some basics.  When considering how many beached birds COASSTers find, we use a measure we call “encounter rate” or the number of carcasses a COASSTer might find per kilometer of beach surveyed.  Encounter rate treats all beaches – wide ones and narrow ones – the same.  And when COASSTers search for carcasses, they comb the entire beach – from the waterline to the vegetation.

Debris is different.

First, we separate debris into size classes:

  • Small Debris (<2.5 cm; think cigarette butt, bottle cap and smaller)
  • Large Debris (>50 cm; think lumber, large pieces of Styrofoam, tires, fishery gear)
  • Medium Debris (all the stuff in-between, or 2.5 cm to 50 cm; think cans, bottles, rope pieces and bags)

Second, we report the amount of debris as a function of the area searched.  So, not per kilometer, but per 10,000 meters squared (10,000m2), or 100m2 to ensure that the values we present are meaningful. To put these areas into perspective, 10,000m2 is approximately the area of two football fields and 100m2 is one quarter the size of a basketball court.

Third, we take account of the differences in the amount of debris in five (5) different beach zones:

  • Surf – waterline to the lowest, freshest line of wrack
  • Wrack – lowest, freshest line up to the oldest line laid down by the monthly tidal cycle
  • Bare – any bare substrate (sand, cobble, whatever) above the wrack zone
  • Wood – the backbeach where driftwood accumulates
  • Vegetation – where the live vegetation takes over

Not surprisingly, small debris  – the count of small debris (per 10,000m2) is much higher than that of medium debris, which is more numerous than large debris.  And this pattern holds for the outer coast, and for Puget Sound.  However, there is a lot more small debris on the outer coast!

The bubbles on the left illustrate debris density, or the estimated count of pieces – by size – you might find on average – from the waterline to the vegetation, scaled to 10,000m2. Small debris (darkest purple) is very abundant, and especially in Central Oregon, where you could find upwards of 10,000 pieces in a 100 meter by 100 meter area of beach! In the middle is a blow-up of the medium and large debris pattern (because those numbers are dwarfed by small debris we had to separate them out and blow them up). To the right is the color code, and a schematic of the relative sizes and types.

And the reverse is true of medium debris – inside waters have a higher density than beaches along the outer coast.  The pattern is similar, albeit less pronounced, for large debris.

Where is all of that small debris?  Mostly in the wrack, at least in Central Oregon.  Conversely, along these outside waters beaches, medium and large debris are primarily found in the vegetation, and secondarily in the wood zone. (Note that small debris are only sampled in the wrack, bare and wood zones).

North Puget Sound COASSTers find similarities, and differences.  Small debris is also most numerous in the wrack zone, but the wood zone has just under 90% of that peak density, and the bare zone sports just under half of peak density.  Medium and large debris are primarily found in the wood zone, but density in the vegetation falls off quickly, in contrast to the vegetation zone on outer coast beaches.

We’ll compare a kilometer long “typical” beach in North Puget Sound to one along the coast of Central Oregon averaged over the year.  You would be lucky to find a single bird in your North Puget Sound beach survey, but you’d likely find 5-10 large pieces of debris, 1,000 medium pieces, and a whopping 2,500 small pieces.

Seems like a lot, until you travel to the coast of Oregon.  Here you would find on 3-5 birds averaged over the year, 3-4 large pieces of debris, 2,500 medium pieces, and a stupendous 100,000 pieces of small debris.

The humongous medium and especially small debris numbers are why COASST subsamples the beach.  Otherwise, Sisyphus would long since have been successful in rolling his rock up the hill before any outercoast COASSTer finished picking up all of the small debris!  A somber note, of course, is that this is what we face along our beaches and in our ocean, and – you guessed it – it’s almost all plastic, with 70% of medium debris and 87% of small debris items being plastic.

Unsolved Mystery – August 2018

This float congregation was recently discovered on Washaway Beach (WA).
Does anyone recognize this assemblage of uniquely-shaped floats? We would like to use the information in an effort to identify the encrusting organism!

You can see two boots in the next photo for scale:
Reply below or email coasst@uw.edu with your guesses and suspicions. Thank you as always for sharing your expertise!

Unsolved Mystery – January 2018

Marine debris COASSTers Jenny and Jesse encountered this “Big gooey blob that could not be pulled apart (Stunk!!!)” during their November survey of Oceanside.
As you can see from our ideas, this item has the COASST office stumped:

“Undead woolly blanket”
“No idea”
“Chunk of flesh”
“Wildling robe fragment”
“Sheep’s clothing shed by a liberated wolf”

Do you know what it is? Please post a comment here or send a message to coasst@uw.edu.

The what, why and future of bird tagging

We need your input! COASST is looking for a new way to track individual birds over time — an alternative to plastic cable ties.

Why do we track individual birds anyway? Tagging prevents re-counting a bird on subsequent surveys as though it were a “new” find, and allows us to document re-find rates, persistence, and scavenging of individual carcasses—all pieces of information that are used to estimate deposition and mortality of birds given what was encountered during surveys.

Colorful wool yarn can form a sequence similar to zip ties that stays in order when tied as shown above.

The effort to identify a new tagging solution was catalyzed by a letter and sample wool yarn kit from Mendocino COASSTer Deb. For the past year, COASSTers on the Kenai Peninsula (AK) and near Sequim (WA) (communities that were especially eager to use a new material) have been testing and providing feedback on kits modeled after Deb’s.

This bird was re-found three months after originally tagged—with the yarn still readable as “orange, grey”

Initial result: yarn provides the right balance of durability and readability, but is quite difficult to apply with gloved hands and in windy conditions.

We’re not yet convinced that transitioning to yarn COASST-wide will work, and are hoping to identify a system that is environmentally responsible and practical on the beach.

Actually, the solution needs to meet a few criteria:

  • Easy to source
  • Inexpensive–we tag thousands of birds a year
  • Unique-ability
    • How can we distinguish one tag from other tags? (e.g. color, number, writing)
  • Durability—lasting but not forever
    • Unique and “readable” for at least 6 months, and doesn’t fall off easily
  • Easy to use in COASST survey conditions (windy, damp, cold hands, gloves)
  • Low environmental impact– what happens to the material after the bird is fully decomposed and washed away?
    • Biodegradable
    • Not mistaken for food by other animals

Two new interns, Lex (left) and Yunbo (right) have joined COASST to help develop and implement an alternative to cable ties.

Enter Lex and Yunbo, two University of Washington Program on the Environment Students who are taking on this challenge for their senior capstone project. The duo will be evaluating potential materials over the upcoming winter quarter.

Right now, they are assembling a list of potential bird tagging materials, and would like to hear from you!

If you have an idea in addition to the starting list below, contacts for potential manufacturers, sources of potential solutions OR If you have an interest in trialing materials that pass the Lex and Yunbo test…

please leave a comment on this blog or contact us by email at coasst@uw.edu with subject: BIRD TAGGING SOLUTION

We will be ordering samples before the start of winter quarter (next week)—so please send us your thoughts as soon as possible!

Below is the current list.

Most promising ideas:

  • Colored hemp twine – natural material that biodegrades, but stiffer and potentially easier to use than yarn
  • Colored waxed cotton yarn – stiffer and potentially easier to use than un-waxed yarn
  • Biodegradable flagging tape – comes in different colors, easy to tie

Ideas with obvious draw-backs:

  • Sci-Ties – biodegradable cable ties that have been patented but are not yet in production
  • Pipe Cleaners – colorful options are made of plastic. Cotton comes in only one color. May not stay on bird
  • Wikki Stix – made of synthetic fiber, heavily coated with food grade wax — may last too long in the environment
  • Paper Twist Ties – have a small metal wire center and have a paper covering. The paper would most likely degrade sooner than 6 months and would leave a metal wire
  • Metal Tags – tags with pre-stamped number sequences are available from a variety of sources but are cost prohibitive
  • Nail Polish – would be difficult when wet and rainy and would require feet. The applicator may get contaminated with sand etc.
  • Dyes/paint – messy, may/may not be durable, expensive
  • Compostable Stickers – will most likely not stick due to sandy or gritty surface of birds

Unsolved Mysteries – September 2017

Gary encountered this metal buoy at Diamond Creek near Homer, Alaska during his first survey in August. We’re wondering where and how this kind of buoy would be used.

Steel buoy found on the Kenai Peninsula, August 2017.

Craig documented this crab trap float fragment in May. Noticing the abundance of variably colorful foam buoys encountered during marine debris surveys made us wonder—do the colors signify anything? Are they painted for easy recognition by the owners?

Colorful float fragment found May 2017, Half Moon Bay Beach, WA.

Ann and Michael encountered this large plastic drum during their August survey of Flat point on Lopez Island, WA. What would this drum have contained?

Plastic drum found August 2017 on Lopez Island, WA.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Please share your ideas in the comments!

Gooney Birds? Mollymawks? Albatross!

A recent spate of Black-footed Albatross finds along the north outer coast of Washington in May and June got us wondering about these majestic birds.

With a wingspan of two meters (!) or longer, albatross are the largest members of the Tubenose Foot-type Family (Procellariidae). In the North Pacific there are three species: the dark-bodied, dark-billed Black-footed Albatross; the light-bodied, Laysan Albatross with a “smokey eye”; and the larger, Short-tailed Albatross, distinguished from Laysan and Black-foots by an over-sized bubblegum pink bill (plumage of Short-tails varies with age).

What else might a COASSTer mistake an albatross for? Bald Eagles, Brown Pelicans, Great-blue Herons and Sandhill Cranes are all COASST finds with overlapping wingspans. But each of these birds can easily be distinguished by foot-type, and bill size and shape.

All of these large-bodied COASST finds have distinctively different feet.

A long-lived, monogamous bird, albatross begin breeding at age 5-10, and it takes two parents to raise a single chick. New pairs may require a few years of practice to “get it right.  After that, mates meet annually for a long breeding season: courtship and “re-acquaintance time” starts in November, eggs appear before the turn of the year, and chicks don’t fledge until mid-summer!

Like all members of the family, albatross have a keen sense of smell and can literally smell their prey from tens of kilometers away, a talent that suits these open ocean birds. Dinner for an albatross?  Neon flying squid, flying fish eggs (tobiko in sushi restaurants), and a range of small fish and shrimp-like organisms that come to the surface of the ocean at night.

Unfortunately, smelling their way to food puts albatross in harm’s way. Fishing vessels smell like floating restaurants, attracting albatross and their smaller relatives – shearwaters and Northern Fulmars – some of which become entangled or hooked in gear. Marine debris can also be deceptively appealing, as some plastics, after floating in the marine environment, adsorb and emit the same chemical (dimethyl sulfide) used by procellariiforms as a cue to identify prey. Not only that, floating debris can look like albatross prey (could you tell the difference between a squid mantle and a red lighter floating at the surface?). Young birds are especially susceptible. Dependent on their misled parents for food, chicks ingest plastics, filling their stomachs with indigestible objects they cannot regurgitate.

Photo: Claude Gascon. One theory to explain why albatross consume marine debris is prey mimicry. Oblong, ~5cm floating objects in the yellow to red color spectrum are squid mantle look-alikes.

Populations of Black-foots and Laysans number in the hundreds of thousands.  In contrast, Short-tails number less than ten thousand and are listed as “vulnerable” on the IUCN Red List (International Union for Conservation of Nature).

With a body that mimics a glider, albatross have the ability to soar tremendous distances.  Even while breeding on islands in the Hawaiian Island chain (Laysan and Black-foots) or southern Japan (Short-tails), breeding adults regularly visit North American waters.  Laysan’s appear to prefer coastal Alaska, whereas Black-foots fly due west to the Lower 48.

Breeding so far from our shores, and preferring the open ocean, you might think COASSTers would never find an albatross.  Not so!  In fact, Black-foots are among our top 30 species.  Peak Black-foot deposition is in the summer: May through August, just when adults are finishing breeding and chicks are coming off the colonies.  But the annual pattern is “irruptive.”  That is, in some years COASSTers are much more apt to find an albatross than in others.  In northern Washington, 2012 and 2017 were break-out years; in southern Washington, 2003, 2007 and 2012 were big.  The good news is that there doesn’t seem to be any trend towards higher numbers.

Although you’d have to walk pretty far, on average, to find an albatross on the beach, they do wash up regularly. Along the West Coast, Black-foots are about three times more prevalent on Washington outer coast beaches than along beaches to the south in Oregon and California. And Laysans are a truly rare find (photos are scaled to encounter rate). On the Aleutian Islands, the opposite is true.

Across the COASST dataset, albatross species wash up exactly where you would expect them to given at-sea sightings: Black-foots along the West Coast, and Laysan along the Aleutian Islands in Alaska. Although the total body count favors the lower 48 (note only 3 Laysan have been found in Alaska), it’s actually the encounter rate (carcasses per kilometer) that is important.  Remember, there are many more COASSTers along the outer coast of Washington, Oregon and California than there are in the Aleutian Islands!  The photographs in the figure above are scaled to species-specific encounter rate the—the chance of finding an albatross in the Aleutians is about the same as along the outer coast of Washington.

A closer look at Black-foot deposition pattern on the West Coast reveals two distinct aggregations: one associated with the entrance of the Strait of Juan de Fuca (we’re guessing these birds are associated with the Juan de Fuca eddy – an oceanographic feature south of the Strait), and a second larger aggregation surrounding the Columbia River.  Both the eddy and the “plume” of river water exiting the Columbia River into the Pacific Ocean are highly productive locations where a hungry chick or exhausted post-breeding adult can hunt pelagic prey.

When Black-foot encounter rates are broken down into smaller lengths of coastline (half a degree of latitude, or about 55 kilometers), it’s clear that some locations attract many more.

Moral of this story? If you hope to see an albatross on a COASST survey, head to the south outer coast of Washington during the summer and take a stroll along the sand.

Unsolved Mysteries – May 2017

This object was recorded as part of a COASST Marine Debris survey at Sunset Beach in Oregon. The text on the yellow label translates to “Warning! Sealed!” Do you know what it is? Perhaps the serial number is a clue.

If you have any ideas, please let us know your thoughts in the comments below, or send us an email at coasst@uw.edu.

 

Unsolved Mysteries – February 2017

These objects have washed in as part of COASST Marine Debris surveys.  Do you know what they are? If so, we’d love to have your help! Please let us know your thoughts in the comments below, or send us an email at coasst@uw.edu.

Michael and Laura found this red plastic part at Edmonds Marina in Washington.

This (part of the Millennium Falcon?) was found on a wilderness beach in Olympic National Park in Washington by Chiggers.

This large and heavily worn object was found by Sean and Becky at Beachside State Park in Oregon.